[6240] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14186] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6240] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
[6241] | 32 | /// Represents a random forest model for regression and classification
|
---|
[6240] | 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
[6241] | 35 | [Item("RandomForestModel", "Represents a random forest for regression and classification.")]
|
---|
[14027] | 36 | public sealed class RandomForestModel : ClassificationModel, IRandomForestModel {
|
---|
[11006] | 37 | // not persisted
|
---|
[6240] | 38 | private alglib.decisionforest randomForest;
|
---|
[11006] | 39 | private alglib.decisionforest RandomForest {
|
---|
| 40 | get {
|
---|
| 41 | // recalculate lazily
|
---|
| 42 | if (randomForest.innerobj.trees == null || randomForest.innerobj.trees.Length == 0) RecalculateModel();
|
---|
| 43 | return randomForest;
|
---|
[6240] | 44 | }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
[14027] | 47 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 48 | get { return originalTrainingData.AllowedInputVariables; }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 |
|
---|
[11006] | 52 | // instead of storing the data of the model itself
|
---|
| 53 | // we instead only store data necessary to recalculate the same model lazily on demand
|
---|
[6240] | 54 | [Storable]
|
---|
[11006] | 55 | private int seed;
|
---|
[6240] | 56 | [Storable]
|
---|
[11006] | 57 | private IDataAnalysisProblemData originalTrainingData;
|
---|
[6241] | 58 | [Storable]
|
---|
| 59 | private double[] classValues;
|
---|
[11006] | 60 | [Storable]
|
---|
| 61 | private int nTrees;
|
---|
| 62 | [Storable]
|
---|
| 63 | private double r;
|
---|
| 64 | [Storable]
|
---|
| 65 | private double m;
|
---|
| 66 |
|
---|
| 67 |
|
---|
[6240] | 68 | [StorableConstructor]
|
---|
[6241] | 69 | private RandomForestModel(bool deserializing)
|
---|
[6240] | 70 | : base(deserializing) {
|
---|
[11006] | 71 | // for backwards compatibility (loading old solutions)
|
---|
| 72 | randomForest = new alglib.decisionforest();
|
---|
[6240] | 73 | }
|
---|
[6241] | 74 | private RandomForestModel(RandomForestModel original, Cloner cloner)
|
---|
[6240] | 75 | : base(original, cloner) {
|
---|
| 76 | randomForest = new alglib.decisionforest();
|
---|
| 77 | randomForest.innerobj.bufsize = original.randomForest.innerobj.bufsize;
|
---|
| 78 | randomForest.innerobj.nclasses = original.randomForest.innerobj.nclasses;
|
---|
| 79 | randomForest.innerobj.ntrees = original.randomForest.innerobj.ntrees;
|
---|
| 80 | randomForest.innerobj.nvars = original.randomForest.innerobj.nvars;
|
---|
[11006] | 81 | // we assume that the trees array (double[]) is immutable in alglib
|
---|
| 82 | randomForest.innerobj.trees = original.randomForest.innerobj.trees;
|
---|
[11901] | 83 |
|
---|
[11006] | 84 | // allowedInputVariables is immutable so we don't need to clone
|
---|
| 85 | allowedInputVariables = original.allowedInputVariables;
|
---|
| 86 |
|
---|
| 87 | // clone data which is necessary to rebuild the model
|
---|
| 88 | this.seed = original.seed;
|
---|
| 89 | this.originalTrainingData = cloner.Clone(original.originalTrainingData);
|
---|
| 90 | // classvalues is immutable so we don't need to clone
|
---|
| 91 | this.classValues = original.classValues;
|
---|
| 92 | this.nTrees = original.nTrees;
|
---|
| 93 | this.r = original.r;
|
---|
| 94 | this.m = original.m;
|
---|
[6240] | 95 | }
|
---|
[11006] | 96 |
|
---|
| 97 | // random forest models can only be created through the static factory methods CreateRegressionModel and CreateClassificationModel
|
---|
[14027] | 98 | private RandomForestModel(string targetVariable, alglib.decisionforest randomForest,
|
---|
[11006] | 99 | int seed, IDataAnalysisProblemData originalTrainingData,
|
---|
| 100 | int nTrees, double r, double m, double[] classValues = null)
|
---|
[14027] | 101 | : base(targetVariable) {
|
---|
[6240] | 102 | this.name = ItemName;
|
---|
| 103 | this.description = ItemDescription;
|
---|
[11006] | 104 | // the model itself
|
---|
[6240] | 105 | this.randomForest = randomForest;
|
---|
[11006] | 106 | // data which is necessary for recalculation of the model
|
---|
| 107 | this.seed = seed;
|
---|
| 108 | this.originalTrainingData = (IDataAnalysisProblemData)originalTrainingData.Clone();
|
---|
| 109 | this.classValues = classValues;
|
---|
| 110 | this.nTrees = nTrees;
|
---|
| 111 | this.r = r;
|
---|
| 112 | this.m = m;
|
---|
[6240] | 113 | }
|
---|
| 114 |
|
---|
| 115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[6241] | 116 | return new RandomForestModel(this, cloner);
|
---|
[6240] | 117 | }
|
---|
| 118 |
|
---|
[11006] | 119 | private void RecalculateModel() {
|
---|
| 120 | double rmsError, oobRmsError, relClassError, oobRelClassError;
|
---|
| 121 | var regressionProblemData = originalTrainingData as IRegressionProblemData;
|
---|
| 122 | var classificationProblemData = originalTrainingData as IClassificationProblemData;
|
---|
| 123 | if (regressionProblemData != null) {
|
---|
| 124 | var model = CreateRegressionModel(regressionProblemData,
|
---|
| 125 | nTrees, r, m, seed, out rmsError, out oobRmsError,
|
---|
| 126 | out relClassError, out oobRelClassError);
|
---|
| 127 | randomForest = model.randomForest;
|
---|
| 128 | } else if (classificationProblemData != null) {
|
---|
| 129 | var model = CreateClassificationModel(classificationProblemData,
|
---|
| 130 | nTrees, r, m, seed, out rmsError, out oobRmsError,
|
---|
| 131 | out relClassError, out oobRelClassError);
|
---|
| 132 | randomForest = model.randomForest;
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 |
|
---|
[12702] | 136 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[11006] | 137 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, AllowedInputVariables, rows);
|
---|
| 138 | AssertInputMatrix(inputData);
|
---|
[6240] | 139 |
|
---|
| 140 | int n = inputData.GetLength(0);
|
---|
| 141 | int columns = inputData.GetLength(1);
|
---|
| 142 | double[] x = new double[columns];
|
---|
| 143 | double[] y = new double[1];
|
---|
| 144 |
|
---|
| 145 | for (int row = 0; row < n; row++) {
|
---|
| 146 | for (int column = 0; column < columns; column++) {
|
---|
| 147 | x[column] = inputData[row, column];
|
---|
| 148 | }
|
---|
[11006] | 149 | alglib.dfprocess(RandomForest, x, ref y);
|
---|
[6240] | 150 | yield return y[0];
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 |
|
---|
[14027] | 154 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[11006] | 155 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, AllowedInputVariables, rows);
|
---|
| 156 | AssertInputMatrix(inputData);
|
---|
[6241] | 157 |
|
---|
| 158 | int n = inputData.GetLength(0);
|
---|
| 159 | int columns = inputData.GetLength(1);
|
---|
| 160 | double[] x = new double[columns];
|
---|
[11006] | 161 | double[] y = new double[RandomForest.innerobj.nclasses];
|
---|
[6241] | 162 |
|
---|
| 163 | for (int row = 0; row < n; row++) {
|
---|
| 164 | for (int column = 0; column < columns; column++) {
|
---|
| 165 | x[column] = inputData[row, column];
|
---|
| 166 | }
|
---|
| 167 | alglib.dfprocess(randomForest, x, ref y);
|
---|
| 168 | // find class for with the largest probability value
|
---|
| 169 | int maxProbClassIndex = 0;
|
---|
| 170 | double maxProb = y[0];
|
---|
| 171 | for (int i = 1; i < y.Length; i++) {
|
---|
| 172 | if (maxProb < y[i]) {
|
---|
| 173 | maxProb = y[i];
|
---|
| 174 | maxProbClassIndex = i;
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 | yield return classValues[maxProbClassIndex];
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 |
|
---|
[14027] | 181 |
|
---|
| 182 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 183 | return new RandomForestRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
[6603] | 184 | }
|
---|
[14027] | 185 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 186 | return new RandomForestClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
[6603] | 187 | }
|
---|
| 188 |
|
---|
[11006] | 189 | public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, int nTrees, double r, double m, int seed,
|
---|
[11901] | 190 | out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
|
---|
| 191 | return CreateRegressionModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed, out rmsError, out avgRelError, out outOfBagAvgRelError, out outOfBagRmsError);
|
---|
| 192 | }
|
---|
[11006] | 193 |
|
---|
[11901] | 194 | public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
|
---|
| 195 | out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
|
---|
[11006] | 196 | var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
|
---|
[11901] | 197 | double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset, variables, trainingIndices);
|
---|
[11006] | 198 |
|
---|
| 199 | alglib.dfreport rep;
|
---|
| 200 | var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, 1, out rep);
|
---|
| 201 |
|
---|
| 202 | rmsError = rep.rmserror;
|
---|
| 203 | avgRelError = rep.avgrelerror;
|
---|
| 204 | outOfBagAvgRelError = rep.oobavgrelerror;
|
---|
| 205 | outOfBagRmsError = rep.oobrmserror;
|
---|
| 206 |
|
---|
[14027] | 207 | return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m);
|
---|
[6240] | 208 | }
|
---|
| 209 |
|
---|
[11006] | 210 | public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, int nTrees, double r, double m, int seed,
|
---|
| 211 | out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
|
---|
[11901] | 212 | return CreateClassificationModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed, out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError);
|
---|
| 213 | }
|
---|
[11006] | 214 |
|
---|
[11901] | 215 | public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
|
---|
| 216 | out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
|
---|
| 217 |
|
---|
[11006] | 218 | var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
|
---|
[11901] | 219 | double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset, variables, trainingIndices);
|
---|
[11006] | 220 |
|
---|
| 221 | var classValues = problemData.ClassValues.ToArray();
|
---|
| 222 | int nClasses = classValues.Length;
|
---|
| 223 |
|
---|
| 224 | // map original class values to values [0..nClasses-1]
|
---|
| 225 | var classIndices = new Dictionary<double, double>();
|
---|
| 226 | for (int i = 0; i < nClasses; i++) {
|
---|
| 227 | classIndices[classValues[i]] = i;
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | int nRows = inputMatrix.GetLength(0);
|
---|
| 231 | int nColumns = inputMatrix.GetLength(1);
|
---|
| 232 | for (int row = 0; row < nRows; row++) {
|
---|
| 233 | inputMatrix[row, nColumns - 1] = classIndices[inputMatrix[row, nColumns - 1]];
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | alglib.dfreport rep;
|
---|
| 237 | var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, nClasses, out rep);
|
---|
| 238 |
|
---|
| 239 | rmsError = rep.rmserror;
|
---|
| 240 | outOfBagRmsError = rep.oobrmserror;
|
---|
| 241 | relClassificationError = rep.relclserror;
|
---|
| 242 | outOfBagRelClassificationError = rep.oobrelclserror;
|
---|
| 243 |
|
---|
[14027] | 244 | return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m, classValues);
|
---|
[11006] | 245 | }
|
---|
| 246 |
|
---|
| 247 | private static alglib.decisionforest CreateRandomForestModel(int seed, double[,] inputMatrix, int nTrees, double r, double m, int nClasses, out alglib.dfreport rep) {
|
---|
| 248 | AssertParameters(r, m);
|
---|
| 249 | AssertInputMatrix(inputMatrix);
|
---|
| 250 |
|
---|
| 251 | int info = 0;
|
---|
| 252 | alglib.math.rndobject = new System.Random(seed);
|
---|
| 253 | var dForest = new alglib.decisionforest();
|
---|
| 254 | rep = new alglib.dfreport();
|
---|
| 255 | int nRows = inputMatrix.GetLength(0);
|
---|
| 256 | int nColumns = inputMatrix.GetLength(1);
|
---|
| 257 | int sampleSize = Math.Max((int)Math.Round(r * nRows), 1);
|
---|
| 258 | int nFeatures = Math.Max((int)Math.Round(m * (nColumns - 1)), 1);
|
---|
| 259 |
|
---|
| 260 | alglib.dforest.dfbuildinternal(inputMatrix, nRows, nColumns - 1, nClasses, nTrees, sampleSize, nFeatures, alglib.dforest.dfusestrongsplits + alglib.dforest.dfuseevs, ref info, dForest.innerobj, rep.innerobj);
|
---|
| 261 | if (info != 1) throw new ArgumentException("Error in calculation of random forest model");
|
---|
| 262 | return dForest;
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 | private static void AssertParameters(double r, double m) {
|
---|
| 266 | if (r <= 0 || r > 1) throw new ArgumentException("The R parameter for random forest modeling must be between 0 and 1.");
|
---|
| 267 | if (m <= 0 || m > 1) throw new ArgumentException("The M parameter for random forest modeling must be between 0 and 1.");
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | private static void AssertInputMatrix(double[,] inputMatrix) {
|
---|
[11901] | 271 | if (inputMatrix.Cast<double>().Any(x => Double.IsNaN(x) || Double.IsInfinity(x)))
|
---|
[11006] | 272 | throw new NotSupportedException("Random forest modeling does not support NaN or infinity values in the input dataset.");
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | #region persistence for backwards compatibility
|
---|
| 276 | // when the originalTrainingData is null this means the model was loaded from an old file
|
---|
| 277 | // therefore, we cannot use the new persistence mechanism because the original data is not available anymore
|
---|
| 278 | // in such cases we still store the compete model
|
---|
| 279 | private bool IsCompatibilityLoaded { get { return originalTrainingData == null; } }
|
---|
| 280 |
|
---|
| 281 | private string[] allowedInputVariables;
|
---|
| 282 | [Storable(Name = "allowedInputVariables")]
|
---|
| 283 | private string[] AllowedInputVariables {
|
---|
| 284 | get {
|
---|
| 285 | if (IsCompatibilityLoaded) return allowedInputVariables;
|
---|
| 286 | else return originalTrainingData.AllowedInputVariables.ToArray();
|
---|
| 287 | }
|
---|
| 288 | set { allowedInputVariables = value; }
|
---|
| 289 | }
|
---|
[6240] | 290 | [Storable]
|
---|
| 291 | private int RandomForestBufSize {
|
---|
| 292 | get {
|
---|
[11006] | 293 | if (IsCompatibilityLoaded) return randomForest.innerobj.bufsize;
|
---|
| 294 | else return 0;
|
---|
[6240] | 295 | }
|
---|
| 296 | set {
|
---|
| 297 | randomForest.innerobj.bufsize = value;
|
---|
| 298 | }
|
---|
| 299 | }
|
---|
| 300 | [Storable]
|
---|
| 301 | private int RandomForestNClasses {
|
---|
| 302 | get {
|
---|
[11006] | 303 | if (IsCompatibilityLoaded) return randomForest.innerobj.nclasses;
|
---|
| 304 | else return 0;
|
---|
[6240] | 305 | }
|
---|
| 306 | set {
|
---|
| 307 | randomForest.innerobj.nclasses = value;
|
---|
| 308 | }
|
---|
| 309 | }
|
---|
| 310 | [Storable]
|
---|
| 311 | private int RandomForestNTrees {
|
---|
| 312 | get {
|
---|
[11006] | 313 | if (IsCompatibilityLoaded) return randomForest.innerobj.ntrees;
|
---|
| 314 | else return 0;
|
---|
[6240] | 315 | }
|
---|
| 316 | set {
|
---|
| 317 | randomForest.innerobj.ntrees = value;
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | [Storable]
|
---|
| 321 | private int RandomForestNVars {
|
---|
| 322 | get {
|
---|
[11006] | 323 | if (IsCompatibilityLoaded) return randomForest.innerobj.nvars;
|
---|
| 324 | else return 0;
|
---|
[6240] | 325 | }
|
---|
| 326 | set {
|
---|
| 327 | randomForest.innerobj.nvars = value;
|
---|
| 328 | }
|
---|
| 329 | }
|
---|
| 330 | [Storable]
|
---|
| 331 | private double[] RandomForestTrees {
|
---|
| 332 | get {
|
---|
[11006] | 333 | if (IsCompatibilityLoaded) return randomForest.innerobj.trees;
|
---|
| 334 | else return new double[] { };
|
---|
[6240] | 335 | }
|
---|
| 336 | set {
|
---|
| 337 | randomForest.innerobj.trees = value;
|
---|
| 338 | }
|
---|
| 339 | }
|
---|
| 340 | #endregion
|
---|
| 341 | }
|
---|
| 342 | }
|
---|