[14024] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
| 35 |
|
---|
| 36 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 37 | /// <summary>
|
---|
| 38 | /// Nonlinear regression data analysis algorithm.
|
---|
| 39 | /// </summary>
|
---|
| 40 | [Item("Nonlinear Regression (NLR)", "Nonlinear regression (curve fitting) data analysis algorithm (wrapper for ALGLIB).")]
|
---|
| 41 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
|
---|
| 42 | [StorableClass]
|
---|
| 43 | public sealed class NonlinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
[14116] | 44 | private const string RegressionSolutionResultName = "Regression solution";
|
---|
[14024] | 45 | private const string ModelStructureParameterName = "Model structure";
|
---|
| 46 | private const string IterationsParameterName = "Iterations";
|
---|
| 47 |
|
---|
| 48 | public IFixedValueParameter<StringValue> ModelStructureParameter {
|
---|
| 49 | get { return (IFixedValueParameter<StringValue>)Parameters[ModelStructureParameterName]; }
|
---|
| 50 | }
|
---|
| 51 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
| 52 | get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public string ModelStructure {
|
---|
| 56 | get { return ModelStructureParameter.Value.Value; }
|
---|
| 57 | set { ModelStructureParameter.Value.Value = value; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public int Iterations {
|
---|
| 61 | get { return IterationsParameter.Value.Value; }
|
---|
| 62 | set { IterationsParameter.Value.Value = value; }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 | [StorableConstructor]
|
---|
| 67 | private NonlinearRegression(bool deserializing) : base(deserializing) { }
|
---|
| 68 | private NonlinearRegression(NonlinearRegression original, Cloner cloner)
|
---|
| 69 | : base(original, cloner) {
|
---|
| 70 | }
|
---|
| 71 | public NonlinearRegression()
|
---|
| 72 | : base() {
|
---|
| 73 | Problem = new RegressionProblem();
|
---|
| 74 | Parameters.Add(new FixedValueParameter<StringValue>(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0")));
|
---|
| 75 | Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
|
---|
| 76 | }
|
---|
| 77 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 78 | private void AfterDeserialization() { }
|
---|
| 79 |
|
---|
| 80 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 81 | return new NonlinearRegression(this, cloner);
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | #region nonlinear regression
|
---|
| 85 | protected override void Run() {
|
---|
| 86 | var solution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations);
|
---|
[14116] | 87 | Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", solution));
|
---|
[14024] | 88 | Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(solution.TrainingRootMeanSquaredError)));
|
---|
| 89 | Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(solution.TestRootMeanSquaredError)));
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | public static ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData, string modelStructure, int maxIterations) {
|
---|
| 93 | var parser = new InfixExpressionParser();
|
---|
| 94 | var tree = parser.Parse(modelStructure);
|
---|
| 95 | var simplifier = new SymbolicDataAnalysisExpressionTreeSimplifier();
|
---|
| 96 |
|
---|
| 97 | if (!SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree)) throw new ArgumentException("The optimizer does not support the specified model structure.");
|
---|
| 98 |
|
---|
| 99 | var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
|
---|
| 100 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
|
---|
| 101 | applyLinearScaling: false, maxIterations: maxIterations,
|
---|
| 102 | updateVariableWeights: false, updateConstantsInTree: true);
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | var scaledModel = new SymbolicRegressionModel(problemData.TargetVariable, tree, (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());
|
---|
| 106 | scaledModel.Scale(problemData);
|
---|
| 107 | SymbolicRegressionSolution solution = new SymbolicRegressionSolution(scaledModel, (IRegressionProblemData)problemData.Clone());
|
---|
| 108 | solution.Model.Name = "Regression Model";
|
---|
| 109 | solution.Name = "Regression Solution";
|
---|
| 110 | return solution;
|
---|
| 111 | }
|
---|
| 112 | #endregion
|
---|
| 113 | }
|
---|
| 114 | }
|
---|