1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HEAL.Attic;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a neural network model for regression and classification
|
---|
33 | /// </summary>
|
---|
34 | [StorableType("AEB9B960-FCA6-4A6D-BD5F-27BCE9CC5BEA")]
|
---|
35 | [Item("NeuralNetworkModel", "Represents a neural network for regression and classification.")]
|
---|
36 | public sealed class NeuralNetworkModel : ClassificationModel, INeuralNetworkModel {
|
---|
37 |
|
---|
38 | private object mlpLocker = new object();
|
---|
39 | private alglib.multilayerperceptron multiLayerPerceptron;
|
---|
40 |
|
---|
41 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
42 | get { return allowedInputVariables; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | [Storable]
|
---|
46 | private string[] allowedInputVariables;
|
---|
47 | [Storable]
|
---|
48 | private double[] classValues;
|
---|
49 | [StorableConstructor]
|
---|
50 | private NeuralNetworkModel(StorableConstructorFlag _) : base(_) {
|
---|
51 | multiLayerPerceptron = new alglib.multilayerperceptron();
|
---|
52 | }
|
---|
53 | private NeuralNetworkModel(NeuralNetworkModel original, Cloner cloner)
|
---|
54 | : base(original, cloner) {
|
---|
55 | multiLayerPerceptron = new alglib.multilayerperceptron();
|
---|
56 | multiLayerPerceptron.innerobj.chunks = (double[,])original.multiLayerPerceptron.innerobj.chunks.Clone();
|
---|
57 | multiLayerPerceptron.innerobj.columnmeans = (double[])original.multiLayerPerceptron.innerobj.columnmeans.Clone();
|
---|
58 | multiLayerPerceptron.innerobj.columnsigmas = (double[])original.multiLayerPerceptron.innerobj.columnsigmas.Clone();
|
---|
59 | multiLayerPerceptron.innerobj.derror = (double[])original.multiLayerPerceptron.innerobj.derror.Clone();
|
---|
60 | multiLayerPerceptron.innerobj.dfdnet = (double[])original.multiLayerPerceptron.innerobj.dfdnet.Clone();
|
---|
61 | multiLayerPerceptron.innerobj.neurons = (double[])original.multiLayerPerceptron.innerobj.neurons.Clone();
|
---|
62 | multiLayerPerceptron.innerobj.nwbuf = (double[])original.multiLayerPerceptron.innerobj.nwbuf.Clone();
|
---|
63 | multiLayerPerceptron.innerobj.structinfo = (int[])original.multiLayerPerceptron.innerobj.structinfo.Clone();
|
---|
64 | multiLayerPerceptron.innerobj.weights = (double[])original.multiLayerPerceptron.innerobj.weights.Clone();
|
---|
65 | multiLayerPerceptron.innerobj.x = (double[])original.multiLayerPerceptron.innerobj.x.Clone();
|
---|
66 | multiLayerPerceptron.innerobj.y = (double[])original.multiLayerPerceptron.innerobj.y.Clone();
|
---|
67 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
68 | if (original.classValues != null)
|
---|
69 | this.classValues = (double[])original.classValues.Clone();
|
---|
70 | }
|
---|
71 | public NeuralNetworkModel(alglib.multilayerperceptron multiLayerPerceptron, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
72 | : base(targetVariable) {
|
---|
73 | this.name = ItemName;
|
---|
74 | this.description = ItemDescription;
|
---|
75 | this.multiLayerPerceptron = multiLayerPerceptron;
|
---|
76 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
77 | if (classValues != null)
|
---|
78 | this.classValues = (double[])classValues.Clone();
|
---|
79 | }
|
---|
80 |
|
---|
81 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
82 | return new NeuralNetworkModel(this, cloner);
|
---|
83 | }
|
---|
84 |
|
---|
85 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
86 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
87 |
|
---|
88 | int n = inputData.GetLength(0);
|
---|
89 | int columns = inputData.GetLength(1);
|
---|
90 | double[] x = new double[columns];
|
---|
91 | double[] y = new double[1];
|
---|
92 |
|
---|
93 | for (int row = 0; row < n; row++) {
|
---|
94 | for (int column = 0; column < columns; column++) {
|
---|
95 | x[column] = inputData[row, column];
|
---|
96 | }
|
---|
97 | // NOTE: mlpprocess changes data in multiLayerPerceptron and is therefore not thread-save!
|
---|
98 | lock (mlpLocker) {
|
---|
99 | alglib.mlpprocess(multiLayerPerceptron, x, ref y);
|
---|
100 | }
|
---|
101 | yield return y[0];
|
---|
102 | }
|
---|
103 | }
|
---|
104 |
|
---|
105 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
106 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
107 |
|
---|
108 | int n = inputData.GetLength(0);
|
---|
109 | int columns = inputData.GetLength(1);
|
---|
110 | double[] x = new double[columns];
|
---|
111 | double[] y = new double[classValues.Length];
|
---|
112 |
|
---|
113 | for (int row = 0; row < n; row++) {
|
---|
114 | for (int column = 0; column < columns; column++) {
|
---|
115 | x[column] = inputData[row, column];
|
---|
116 | }
|
---|
117 | // NOTE: mlpprocess changes data in multiLayerPerceptron and is therefore not thread-save!
|
---|
118 | lock (mlpLocker) {
|
---|
119 | alglib.mlpprocess(multiLayerPerceptron, x, ref y);
|
---|
120 | }
|
---|
121 | // find class for with the largest probability value
|
---|
122 | int maxProbClassIndex = 0;
|
---|
123 | double maxProb = y[0];
|
---|
124 | for (int i = 1; i < y.Length; i++) {
|
---|
125 | if (maxProb < y[i]) {
|
---|
126 | maxProb = y[i];
|
---|
127 | maxProbClassIndex = i;
|
---|
128 | }
|
---|
129 | }
|
---|
130 | yield return classValues[maxProbClassIndex];
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
135 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
136 | }
|
---|
137 |
|
---|
138 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
139 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
140 |
|
---|
141 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
142 | if (regressionProblemData != null)
|
---|
143 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
144 |
|
---|
145 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
146 | if (classificationProblemData != null)
|
---|
147 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
148 |
|
---|
149 | throw new ArgumentException("The problem data is not compatible with this neural network. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
150 | }
|
---|
151 |
|
---|
152 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
153 | return new NeuralNetworkRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
154 | }
|
---|
155 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
156 | return new NeuralNetworkClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
157 | }
|
---|
158 |
|
---|
159 | #region persistence
|
---|
160 | [Storable]
|
---|
161 | private double[,] MultiLayerPerceptronChunks {
|
---|
162 | get {
|
---|
163 | return multiLayerPerceptron.innerobj.chunks;
|
---|
164 | }
|
---|
165 | set {
|
---|
166 | multiLayerPerceptron.innerobj.chunks = value;
|
---|
167 | }
|
---|
168 | }
|
---|
169 | [Storable]
|
---|
170 | private double[] MultiLayerPerceptronColumnMeans {
|
---|
171 | get {
|
---|
172 | return multiLayerPerceptron.innerobj.columnmeans;
|
---|
173 | }
|
---|
174 | set {
|
---|
175 | multiLayerPerceptron.innerobj.columnmeans = value;
|
---|
176 | }
|
---|
177 | }
|
---|
178 | [Storable]
|
---|
179 | private double[] MultiLayerPerceptronColumnSigmas {
|
---|
180 | get {
|
---|
181 | return multiLayerPerceptron.innerobj.columnsigmas;
|
---|
182 | }
|
---|
183 | set {
|
---|
184 | multiLayerPerceptron.innerobj.columnsigmas = value;
|
---|
185 | }
|
---|
186 | }
|
---|
187 | [Storable]
|
---|
188 | private double[] MultiLayerPerceptronDError {
|
---|
189 | get {
|
---|
190 | return multiLayerPerceptron.innerobj.derror;
|
---|
191 | }
|
---|
192 | set {
|
---|
193 | multiLayerPerceptron.innerobj.derror = value;
|
---|
194 | }
|
---|
195 | }
|
---|
196 | [Storable]
|
---|
197 | private double[] MultiLayerPerceptronDfdnet {
|
---|
198 | get {
|
---|
199 | return multiLayerPerceptron.innerobj.dfdnet;
|
---|
200 | }
|
---|
201 | set {
|
---|
202 | multiLayerPerceptron.innerobj.dfdnet = value;
|
---|
203 | }
|
---|
204 | }
|
---|
205 | [Storable]
|
---|
206 | private double[] MultiLayerPerceptronNeurons {
|
---|
207 | get {
|
---|
208 | return multiLayerPerceptron.innerobj.neurons;
|
---|
209 | }
|
---|
210 | set {
|
---|
211 | multiLayerPerceptron.innerobj.neurons = value;
|
---|
212 | }
|
---|
213 | }
|
---|
214 | [Storable]
|
---|
215 | private double[] MultiLayerPerceptronNwbuf {
|
---|
216 | get {
|
---|
217 | return multiLayerPerceptron.innerobj.nwbuf;
|
---|
218 | }
|
---|
219 | set {
|
---|
220 | multiLayerPerceptron.innerobj.nwbuf = value;
|
---|
221 | }
|
---|
222 | }
|
---|
223 | [Storable]
|
---|
224 | private int[] MultiLayerPerceptronStuctinfo {
|
---|
225 | get {
|
---|
226 | return multiLayerPerceptron.innerobj.structinfo;
|
---|
227 | }
|
---|
228 | set {
|
---|
229 | multiLayerPerceptron.innerobj.structinfo = value;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | [Storable]
|
---|
233 | private double[] MultiLayerPerceptronWeights {
|
---|
234 | get {
|
---|
235 | return multiLayerPerceptron.innerobj.weights;
|
---|
236 | }
|
---|
237 | set {
|
---|
238 | multiLayerPerceptron.innerobj.weights = value;
|
---|
239 | }
|
---|
240 | }
|
---|
241 | [Storable]
|
---|
242 | private double[] MultiLayerPerceptronX {
|
---|
243 | get {
|
---|
244 | return multiLayerPerceptron.innerobj.x;
|
---|
245 | }
|
---|
246 | set {
|
---|
247 | multiLayerPerceptron.innerobj.x = value;
|
---|
248 | }
|
---|
249 | }
|
---|
250 | [Storable]
|
---|
251 | private double[] MultiLayerPerceptronY {
|
---|
252 | get {
|
---|
253 | return multiLayerPerceptron.innerobj.y;
|
---|
254 | }
|
---|
255 | set {
|
---|
256 | multiLayerPerceptron.innerobj.y = value;
|
---|
257 | }
|
---|
258 | }
|
---|
259 | #endregion
|
---|
260 | }
|
---|
261 | }
|
---|