[6577] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6577] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[17097] | 27 | using HEAL.Attic;
|
---|
[6577] | 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Represents a neural network model for regression and classification
|
---|
| 33 | /// </summary>
|
---|
[17097] | 34 | [StorableType("AEB9B960-FCA6-4A6D-BD5F-27BCE9CC5BEA")]
|
---|
[6577] | 35 | [Item("NeuralNetworkModel", "Represents a neural network for regression and classification.")]
|
---|
[14027] | 36 | public sealed class NeuralNetworkModel : ClassificationModel, INeuralNetworkModel {
|
---|
[6577] | 37 |
|
---|
[16387] | 38 | private object mlpLocker = new object();
|
---|
[6577] | 39 | private alglib.multilayerperceptron multiLayerPerceptron;
|
---|
| 40 |
|
---|
[14027] | 41 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 42 | get { return allowedInputVariables; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[6577] | 45 | [Storable]
|
---|
| 46 | private string[] allowedInputVariables;
|
---|
| 47 | [Storable]
|
---|
| 48 | private double[] classValues;
|
---|
| 49 | [StorableConstructor]
|
---|
[17097] | 50 | private NeuralNetworkModel(StorableConstructorFlag _) : base(_) {
|
---|
| 51 | multiLayerPerceptron = new alglib.multilayerperceptron();
|
---|
[6577] | 52 | }
|
---|
| 53 | private NeuralNetworkModel(NeuralNetworkModel original, Cloner cloner)
|
---|
| 54 | : base(original, cloner) {
|
---|
| 55 | multiLayerPerceptron = new alglib.multilayerperceptron();
|
---|
| 56 | multiLayerPerceptron.innerobj.chunks = (double[,])original.multiLayerPerceptron.innerobj.chunks.Clone();
|
---|
| 57 | multiLayerPerceptron.innerobj.columnmeans = (double[])original.multiLayerPerceptron.innerobj.columnmeans.Clone();
|
---|
| 58 | multiLayerPerceptron.innerobj.columnsigmas = (double[])original.multiLayerPerceptron.innerobj.columnsigmas.Clone();
|
---|
| 59 | multiLayerPerceptron.innerobj.derror = (double[])original.multiLayerPerceptron.innerobj.derror.Clone();
|
---|
| 60 | multiLayerPerceptron.innerobj.dfdnet = (double[])original.multiLayerPerceptron.innerobj.dfdnet.Clone();
|
---|
| 61 | multiLayerPerceptron.innerobj.neurons = (double[])original.multiLayerPerceptron.innerobj.neurons.Clone();
|
---|
| 62 | multiLayerPerceptron.innerobj.nwbuf = (double[])original.multiLayerPerceptron.innerobj.nwbuf.Clone();
|
---|
| 63 | multiLayerPerceptron.innerobj.structinfo = (int[])original.multiLayerPerceptron.innerobj.structinfo.Clone();
|
---|
| 64 | multiLayerPerceptron.innerobj.weights = (double[])original.multiLayerPerceptron.innerobj.weights.Clone();
|
---|
| 65 | multiLayerPerceptron.innerobj.x = (double[])original.multiLayerPerceptron.innerobj.x.Clone();
|
---|
| 66 | multiLayerPerceptron.innerobj.y = (double[])original.multiLayerPerceptron.innerobj.y.Clone();
|
---|
| 67 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
| 68 | if (original.classValues != null)
|
---|
| 69 | this.classValues = (double[])original.classValues.Clone();
|
---|
| 70 | }
|
---|
| 71 | public NeuralNetworkModel(alglib.multilayerperceptron multiLayerPerceptron, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
[14027] | 72 | : base(targetVariable) {
|
---|
[6577] | 73 | this.name = ItemName;
|
---|
| 74 | this.description = ItemDescription;
|
---|
| 75 | this.multiLayerPerceptron = multiLayerPerceptron;
|
---|
| 76 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 77 | if (classValues != null)
|
---|
| 78 | this.classValues = (double[])classValues.Clone();
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 82 | return new NeuralNetworkModel(this, cloner);
|
---|
| 83 | }
|
---|
| 84 |
|
---|
[12702] | 85 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[15142] | 86 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
[6577] | 87 |
|
---|
| 88 | int n = inputData.GetLength(0);
|
---|
| 89 | int columns = inputData.GetLength(1);
|
---|
| 90 | double[] x = new double[columns];
|
---|
| 91 | double[] y = new double[1];
|
---|
| 92 |
|
---|
| 93 | for (int row = 0; row < n; row++) {
|
---|
| 94 | for (int column = 0; column < columns; column++) {
|
---|
| 95 | x[column] = inputData[row, column];
|
---|
| 96 | }
|
---|
[16387] | 97 | // NOTE: mlpprocess changes data in multiLayerPerceptron and is therefore not thread-save!
|
---|
| 98 | lock (mlpLocker) {
|
---|
| 99 | alglib.mlpprocess(multiLayerPerceptron, x, ref y);
|
---|
| 100 | }
|
---|
[6577] | 101 | yield return y[0];
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 |
|
---|
[14027] | 105 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[16387] | 106 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
[6577] | 107 |
|
---|
| 108 | int n = inputData.GetLength(0);
|
---|
| 109 | int columns = inputData.GetLength(1);
|
---|
| 110 | double[] x = new double[columns];
|
---|
| 111 | double[] y = new double[classValues.Length];
|
---|
| 112 |
|
---|
| 113 | for (int row = 0; row < n; row++) {
|
---|
| 114 | for (int column = 0; column < columns; column++) {
|
---|
| 115 | x[column] = inputData[row, column];
|
---|
| 116 | }
|
---|
[16387] | 117 | // NOTE: mlpprocess changes data in multiLayerPerceptron and is therefore not thread-save!
|
---|
| 118 | lock (mlpLocker) {
|
---|
| 119 | alglib.mlpprocess(multiLayerPerceptron, x, ref y);
|
---|
| 120 | }
|
---|
[6577] | 121 | // find class for with the largest probability value
|
---|
| 122 | int maxProbClassIndex = 0;
|
---|
| 123 | double maxProb = y[0];
|
---|
| 124 | for (int i = 1; i < y.Length; i++) {
|
---|
| 125 | if (maxProb < y[i]) {
|
---|
| 126 | maxProb = y[i];
|
---|
| 127 | maxProbClassIndex = i;
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | yield return classValues[maxProbClassIndex];
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 |
|
---|
[17054] | 134 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
| 135 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
| 139 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
| 140 |
|
---|
| 141 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
| 142 | if (regressionProblemData != null)
|
---|
| 143 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
| 144 |
|
---|
| 145 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
| 146 | if (classificationProblemData != null)
|
---|
| 147 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
| 148 |
|
---|
| 149 | throw new ArgumentException("The problem data is not compatible with this neural network. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
| 150 | }
|
---|
| 151 |
|
---|
[14027] | 152 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 153 | return new NeuralNetworkRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
[6603] | 154 | }
|
---|
[14027] | 155 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 156 | return new NeuralNetworkClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
[6603] | 157 | }
|
---|
| 158 |
|
---|
[6577] | 159 | #region persistence
|
---|
| 160 | [Storable]
|
---|
| 161 | private double[,] MultiLayerPerceptronChunks {
|
---|
| 162 | get {
|
---|
| 163 | return multiLayerPerceptron.innerobj.chunks;
|
---|
| 164 | }
|
---|
| 165 | set {
|
---|
| 166 | multiLayerPerceptron.innerobj.chunks = value;
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | [Storable]
|
---|
| 170 | private double[] MultiLayerPerceptronColumnMeans {
|
---|
| 171 | get {
|
---|
| 172 | return multiLayerPerceptron.innerobj.columnmeans;
|
---|
| 173 | }
|
---|
| 174 | set {
|
---|
| 175 | multiLayerPerceptron.innerobj.columnmeans = value;
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | [Storable]
|
---|
| 179 | private double[] MultiLayerPerceptronColumnSigmas {
|
---|
| 180 | get {
|
---|
| 181 | return multiLayerPerceptron.innerobj.columnsigmas;
|
---|
| 182 | }
|
---|
| 183 | set {
|
---|
| 184 | multiLayerPerceptron.innerobj.columnsigmas = value;
|
---|
| 185 | }
|
---|
| 186 | }
|
---|
| 187 | [Storable]
|
---|
| 188 | private double[] MultiLayerPerceptronDError {
|
---|
| 189 | get {
|
---|
| 190 | return multiLayerPerceptron.innerobj.derror;
|
---|
| 191 | }
|
---|
| 192 | set {
|
---|
| 193 | multiLayerPerceptron.innerobj.derror = value;
|
---|
| 194 | }
|
---|
| 195 | }
|
---|
| 196 | [Storable]
|
---|
| 197 | private double[] MultiLayerPerceptronDfdnet {
|
---|
| 198 | get {
|
---|
| 199 | return multiLayerPerceptron.innerobj.dfdnet;
|
---|
| 200 | }
|
---|
| 201 | set {
|
---|
| 202 | multiLayerPerceptron.innerobj.dfdnet = value;
|
---|
| 203 | }
|
---|
| 204 | }
|
---|
| 205 | [Storable]
|
---|
| 206 | private double[] MultiLayerPerceptronNeurons {
|
---|
| 207 | get {
|
---|
| 208 | return multiLayerPerceptron.innerobj.neurons;
|
---|
| 209 | }
|
---|
| 210 | set {
|
---|
| 211 | multiLayerPerceptron.innerobj.neurons = value;
|
---|
| 212 | }
|
---|
| 213 | }
|
---|
| 214 | [Storable]
|
---|
| 215 | private double[] MultiLayerPerceptronNwbuf {
|
---|
| 216 | get {
|
---|
| 217 | return multiLayerPerceptron.innerobj.nwbuf;
|
---|
| 218 | }
|
---|
| 219 | set {
|
---|
| 220 | multiLayerPerceptron.innerobj.nwbuf = value;
|
---|
| 221 | }
|
---|
| 222 | }
|
---|
| 223 | [Storable]
|
---|
| 224 | private int[] MultiLayerPerceptronStuctinfo {
|
---|
| 225 | get {
|
---|
| 226 | return multiLayerPerceptron.innerobj.structinfo;
|
---|
| 227 | }
|
---|
| 228 | set {
|
---|
| 229 | multiLayerPerceptron.innerobj.structinfo = value;
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 | [Storable]
|
---|
| 233 | private double[] MultiLayerPerceptronWeights {
|
---|
| 234 | get {
|
---|
| 235 | return multiLayerPerceptron.innerobj.weights;
|
---|
| 236 | }
|
---|
| 237 | set {
|
---|
| 238 | multiLayerPerceptron.innerobj.weights = value;
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 | [Storable]
|
---|
| 242 | private double[] MultiLayerPerceptronX {
|
---|
| 243 | get {
|
---|
| 244 | return multiLayerPerceptron.innerobj.x;
|
---|
| 245 | }
|
---|
| 246 | set {
|
---|
| 247 | multiLayerPerceptron.innerobj.x = value;
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 | [Storable]
|
---|
| 251 | private double[] MultiLayerPerceptronY {
|
---|
| 252 | get {
|
---|
| 253 | return multiLayerPerceptron.innerobj.y;
|
---|
| 254 | }
|
---|
| 255 | set {
|
---|
| 256 | multiLayerPerceptron.innerobj.y = value;
|
---|
| 257 | }
|
---|
| 258 | }
|
---|
| 259 | #endregion
|
---|
| 260 | }
|
---|
| 261 | }
|
---|