[6577] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6577] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Represents a neural network model for regression and classification
|
---|
| 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
| 35 | [Item("NeuralNetworkModel", "Represents a neural network for regression and classification.")]
|
---|
| 36 | public sealed class NeuralNetworkModel : NamedItem, INeuralNetworkModel {
|
---|
| 37 |
|
---|
| 38 | private alglib.multilayerperceptron multiLayerPerceptron;
|
---|
| 39 | public alglib.multilayerperceptron MultiLayerPerceptron {
|
---|
| 40 | get { return multiLayerPerceptron; }
|
---|
| 41 | set {
|
---|
| 42 | if (value != multiLayerPerceptron) {
|
---|
| 43 | if (value == null) throw new ArgumentNullException();
|
---|
| 44 | multiLayerPerceptron = value;
|
---|
| 45 | OnChanged(EventArgs.Empty);
|
---|
| 46 | }
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | [Storable]
|
---|
| 51 | private string targetVariable;
|
---|
| 52 | [Storable]
|
---|
| 53 | private string[] allowedInputVariables;
|
---|
| 54 | [Storable]
|
---|
| 55 | private double[] classValues;
|
---|
| 56 | [StorableConstructor]
|
---|
| 57 | private NeuralNetworkModel(bool deserializing)
|
---|
| 58 | : base(deserializing) {
|
---|
| 59 | if (deserializing)
|
---|
| 60 | multiLayerPerceptron = new alglib.multilayerperceptron();
|
---|
| 61 | }
|
---|
| 62 | private NeuralNetworkModel(NeuralNetworkModel original, Cloner cloner)
|
---|
| 63 | : base(original, cloner) {
|
---|
| 64 | multiLayerPerceptron = new alglib.multilayerperceptron();
|
---|
| 65 | multiLayerPerceptron.innerobj.chunks = (double[,])original.multiLayerPerceptron.innerobj.chunks.Clone();
|
---|
| 66 | multiLayerPerceptron.innerobj.columnmeans = (double[])original.multiLayerPerceptron.innerobj.columnmeans.Clone();
|
---|
| 67 | multiLayerPerceptron.innerobj.columnsigmas = (double[])original.multiLayerPerceptron.innerobj.columnsigmas.Clone();
|
---|
| 68 | multiLayerPerceptron.innerobj.derror = (double[])original.multiLayerPerceptron.innerobj.derror.Clone();
|
---|
| 69 | multiLayerPerceptron.innerobj.dfdnet = (double[])original.multiLayerPerceptron.innerobj.dfdnet.Clone();
|
---|
| 70 | multiLayerPerceptron.innerobj.neurons = (double[])original.multiLayerPerceptron.innerobj.neurons.Clone();
|
---|
| 71 | multiLayerPerceptron.innerobj.nwbuf = (double[])original.multiLayerPerceptron.innerobj.nwbuf.Clone();
|
---|
| 72 | multiLayerPerceptron.innerobj.structinfo = (int[])original.multiLayerPerceptron.innerobj.structinfo.Clone();
|
---|
| 73 | multiLayerPerceptron.innerobj.weights = (double[])original.multiLayerPerceptron.innerobj.weights.Clone();
|
---|
| 74 | multiLayerPerceptron.innerobj.x = (double[])original.multiLayerPerceptron.innerobj.x.Clone();
|
---|
| 75 | multiLayerPerceptron.innerobj.y = (double[])original.multiLayerPerceptron.innerobj.y.Clone();
|
---|
| 76 | targetVariable = original.targetVariable;
|
---|
| 77 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
| 78 | if (original.classValues != null)
|
---|
| 79 | this.classValues = (double[])original.classValues.Clone();
|
---|
| 80 | }
|
---|
| 81 | public NeuralNetworkModel(alglib.multilayerperceptron multiLayerPerceptron, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
| 82 | : base() {
|
---|
| 83 | this.name = ItemName;
|
---|
| 84 | this.description = ItemDescription;
|
---|
| 85 | this.multiLayerPerceptron = multiLayerPerceptron;
|
---|
| 86 | this.targetVariable = targetVariable;
|
---|
| 87 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 88 | if (classValues != null)
|
---|
| 89 | this.classValues = (double[])classValues.Clone();
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 93 | return new NeuralNetworkModel(this, cloner);
|
---|
| 94 | }
|
---|
| 95 |
|
---|
[12702] | 96 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[6577] | 97 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
| 98 |
|
---|
| 99 | int n = inputData.GetLength(0);
|
---|
| 100 | int columns = inputData.GetLength(1);
|
---|
| 101 | double[] x = new double[columns];
|
---|
| 102 | double[] y = new double[1];
|
---|
| 103 |
|
---|
| 104 | for (int row = 0; row < n; row++) {
|
---|
| 105 | for (int column = 0; column < columns; column++) {
|
---|
| 106 | x[column] = inputData[row, column];
|
---|
| 107 | }
|
---|
| 108 | alglib.mlpprocess(multiLayerPerceptron, x, ref y);
|
---|
| 109 | yield return y[0];
|
---|
| 110 | }
|
---|
| 111 | }
|
---|
| 112 |
|
---|
[12702] | 113 | public IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[6577] | 114 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
| 115 |
|
---|
| 116 | int n = inputData.GetLength(0);
|
---|
| 117 | int columns = inputData.GetLength(1);
|
---|
| 118 | double[] x = new double[columns];
|
---|
| 119 | double[] y = new double[classValues.Length];
|
---|
| 120 |
|
---|
| 121 | for (int row = 0; row < n; row++) {
|
---|
| 122 | for (int column = 0; column < columns; column++) {
|
---|
| 123 | x[column] = inputData[row, column];
|
---|
| 124 | }
|
---|
| 125 | alglib.mlpprocess(multiLayerPerceptron, x, ref y);
|
---|
| 126 | // find class for with the largest probability value
|
---|
| 127 | int maxProbClassIndex = 0;
|
---|
| 128 | double maxProb = y[0];
|
---|
| 129 | for (int i = 1; i < y.Length; i++) {
|
---|
| 130 | if (maxProb < y[i]) {
|
---|
| 131 | maxProb = y[i];
|
---|
| 132 | maxProbClassIndex = i;
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | yield return classValues[maxProbClassIndex];
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 |
|
---|
[6603] | 139 | public INeuralNetworkRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[8528] | 140 | return new NeuralNetworkRegressionSolution(new RegressionProblemData(problemData), this);
|
---|
[6603] | 141 | }
|
---|
| 142 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 143 | return CreateRegressionSolution(problemData);
|
---|
| 144 | }
|
---|
[6604] | 145 | public INeuralNetworkClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
[8528] | 146 | return new NeuralNetworkClassificationSolution(new ClassificationProblemData(problemData), this);
|
---|
[6604] | 147 | }
|
---|
| 148 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 149 | return CreateClassificationSolution(problemData);
|
---|
| 150 | }
|
---|
[6603] | 151 |
|
---|
[6577] | 152 | #region events
|
---|
| 153 | public event EventHandler Changed;
|
---|
| 154 | private void OnChanged(EventArgs e) {
|
---|
| 155 | var handlers = Changed;
|
---|
| 156 | if (handlers != null)
|
---|
| 157 | handlers(this, e);
|
---|
| 158 | }
|
---|
| 159 | #endregion
|
---|
| 160 |
|
---|
| 161 | #region persistence
|
---|
| 162 | [Storable]
|
---|
| 163 | private double[,] MultiLayerPerceptronChunks {
|
---|
| 164 | get {
|
---|
| 165 | return multiLayerPerceptron.innerobj.chunks;
|
---|
| 166 | }
|
---|
| 167 | set {
|
---|
| 168 | multiLayerPerceptron.innerobj.chunks = value;
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | [Storable]
|
---|
| 172 | private double[] MultiLayerPerceptronColumnMeans {
|
---|
| 173 | get {
|
---|
| 174 | return multiLayerPerceptron.innerobj.columnmeans;
|
---|
| 175 | }
|
---|
| 176 | set {
|
---|
| 177 | multiLayerPerceptron.innerobj.columnmeans = value;
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 | [Storable]
|
---|
| 181 | private double[] MultiLayerPerceptronColumnSigmas {
|
---|
| 182 | get {
|
---|
| 183 | return multiLayerPerceptron.innerobj.columnsigmas;
|
---|
| 184 | }
|
---|
| 185 | set {
|
---|
| 186 | multiLayerPerceptron.innerobj.columnsigmas = value;
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 | [Storable]
|
---|
| 190 | private double[] MultiLayerPerceptronDError {
|
---|
| 191 | get {
|
---|
| 192 | return multiLayerPerceptron.innerobj.derror;
|
---|
| 193 | }
|
---|
| 194 | set {
|
---|
| 195 | multiLayerPerceptron.innerobj.derror = value;
|
---|
| 196 | }
|
---|
| 197 | }
|
---|
| 198 | [Storable]
|
---|
| 199 | private double[] MultiLayerPerceptronDfdnet {
|
---|
| 200 | get {
|
---|
| 201 | return multiLayerPerceptron.innerobj.dfdnet;
|
---|
| 202 | }
|
---|
| 203 | set {
|
---|
| 204 | multiLayerPerceptron.innerobj.dfdnet = value;
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | [Storable]
|
---|
| 208 | private double[] MultiLayerPerceptronNeurons {
|
---|
| 209 | get {
|
---|
| 210 | return multiLayerPerceptron.innerobj.neurons;
|
---|
| 211 | }
|
---|
| 212 | set {
|
---|
| 213 | multiLayerPerceptron.innerobj.neurons = value;
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | [Storable]
|
---|
| 217 | private double[] MultiLayerPerceptronNwbuf {
|
---|
| 218 | get {
|
---|
| 219 | return multiLayerPerceptron.innerobj.nwbuf;
|
---|
| 220 | }
|
---|
| 221 | set {
|
---|
| 222 | multiLayerPerceptron.innerobj.nwbuf = value;
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 | [Storable]
|
---|
| 226 | private int[] MultiLayerPerceptronStuctinfo {
|
---|
| 227 | get {
|
---|
| 228 | return multiLayerPerceptron.innerobj.structinfo;
|
---|
| 229 | }
|
---|
| 230 | set {
|
---|
| 231 | multiLayerPerceptron.innerobj.structinfo = value;
|
---|
| 232 | }
|
---|
| 233 | }
|
---|
| 234 | [Storable]
|
---|
| 235 | private double[] MultiLayerPerceptronWeights {
|
---|
| 236 | get {
|
---|
| 237 | return multiLayerPerceptron.innerobj.weights;
|
---|
| 238 | }
|
---|
| 239 | set {
|
---|
| 240 | multiLayerPerceptron.innerobj.weights = value;
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 | [Storable]
|
---|
| 244 | private double[] MultiLayerPerceptronX {
|
---|
| 245 | get {
|
---|
| 246 | return multiLayerPerceptron.innerobj.x;
|
---|
| 247 | }
|
---|
| 248 | set {
|
---|
| 249 | multiLayerPerceptron.innerobj.x = value;
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | [Storable]
|
---|
| 253 | private double[] MultiLayerPerceptronY {
|
---|
| 254 | get {
|
---|
| 255 | return multiLayerPerceptron.innerobj.y;
|
---|
| 256 | }
|
---|
| 257 | set {
|
---|
| 258 | multiLayerPerceptron.innerobj.y = value;
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
| 261 | #endregion
|
---|
| 262 | }
|
---|
| 263 | }
|
---|