[6577] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6577] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[17097] | 27 | using HEAL.Attic;
|
---|
[6577] | 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
[6580] | 32 | /// Represents a neural network ensembel model for regression and classification
|
---|
[6577] | 33 | /// </summary>
|
---|
[17097] | 34 | [StorableType("51B29670-27BD-405C-A521-39814E4BD857")]
|
---|
[6580] | 35 | [Item("NeuralNetworkEnsembleModel", "Represents a neural network ensemble for regression and classification.")]
|
---|
[14027] | 36 | public sealed class NeuralNetworkEnsembleModel : ClassificationModel, INeuralNetworkEnsembleModel {
|
---|
[6577] | 37 |
|
---|
[16387] | 38 | private object mlpEnsembleLocker = new object();
|
---|
[6580] | 39 | private alglib.mlpensemble mlpEnsemble;
|
---|
[6577] | 40 |
|
---|
[14027] | 41 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 42 | get { return allowedInputVariables; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[6577] | 45 | [Storable]
|
---|
| 46 | private string targetVariable;
|
---|
| 47 | [Storable]
|
---|
| 48 | private string[] allowedInputVariables;
|
---|
| 49 | [Storable]
|
---|
| 50 | private double[] classValues;
|
---|
| 51 | [StorableConstructor]
|
---|
[17097] | 52 | private NeuralNetworkEnsembleModel(StorableConstructorFlag _) : base(_) {
|
---|
| 53 | mlpEnsemble = new alglib.mlpensemble();
|
---|
[6577] | 54 | }
|
---|
[6580] | 55 | private NeuralNetworkEnsembleModel(NeuralNetworkEnsembleModel original, Cloner cloner)
|
---|
[6577] | 56 | : base(original, cloner) {
|
---|
[6580] | 57 | mlpEnsemble = new alglib.mlpensemble();
|
---|
[7694] | 58 | string serializedEnsemble;
|
---|
| 59 | alglib.mlpeserialize(original.mlpEnsemble, out serializedEnsemble);
|
---|
| 60 | alglib.mlpeunserialize(serializedEnsemble, out this.mlpEnsemble);
|
---|
[6577] | 61 | targetVariable = original.targetVariable;
|
---|
| 62 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
| 63 | if (original.classValues != null)
|
---|
| 64 | this.classValues = (double[])original.classValues.Clone();
|
---|
| 65 | }
|
---|
[6580] | 66 | public NeuralNetworkEnsembleModel(alglib.mlpensemble mlpEnsemble, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
[14027] | 67 | : base(targetVariable) {
|
---|
[6577] | 68 | this.name = ItemName;
|
---|
| 69 | this.description = ItemDescription;
|
---|
[6580] | 70 | this.mlpEnsemble = mlpEnsemble;
|
---|
[6577] | 71 | this.targetVariable = targetVariable;
|
---|
| 72 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 73 | if (classValues != null)
|
---|
| 74 | this.classValues = (double[])classValues.Clone();
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[6580] | 78 | return new NeuralNetworkEnsembleModel(this, cloner);
|
---|
[6577] | 79 | }
|
---|
| 80 |
|
---|
[12702] | 81 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[15142] | 82 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
[6577] | 83 |
|
---|
| 84 | int n = inputData.GetLength(0);
|
---|
| 85 | int columns = inputData.GetLength(1);
|
---|
| 86 | double[] x = new double[columns];
|
---|
| 87 | double[] y = new double[1];
|
---|
| 88 |
|
---|
| 89 | for (int row = 0; row < n; row++) {
|
---|
| 90 | for (int column = 0; column < columns; column++) {
|
---|
| 91 | x[column] = inputData[row, column];
|
---|
| 92 | }
|
---|
[16387] | 93 | // mlpeprocess writes data in mlpEnsemble and is therefore not thread-safe
|
---|
| 94 | lock (mlpEnsembleLocker) {
|
---|
| 95 | alglib.mlpeprocess(mlpEnsemble, x, ref y);
|
---|
| 96 | }
|
---|
[6577] | 97 | yield return y[0];
|
---|
| 98 | }
|
---|
| 99 | }
|
---|
| 100 |
|
---|
[14027] | 101 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[15142] | 102 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
[6577] | 103 |
|
---|
| 104 | int n = inputData.GetLength(0);
|
---|
| 105 | int columns = inputData.GetLength(1);
|
---|
| 106 | double[] x = new double[columns];
|
---|
| 107 | double[] y = new double[classValues.Length];
|
---|
| 108 |
|
---|
| 109 | for (int row = 0; row < n; row++) {
|
---|
| 110 | for (int column = 0; column < columns; column++) {
|
---|
| 111 | x[column] = inputData[row, column];
|
---|
| 112 | }
|
---|
[16387] | 113 | // mlpeprocess writes data in mlpEnsemble and is therefore not thread-safe
|
---|
| 114 | lock (mlpEnsembleLocker) {
|
---|
| 115 | alglib.mlpeprocess(mlpEnsemble, x, ref y);
|
---|
| 116 | }
|
---|
[6577] | 117 | // find class for with the largest probability value
|
---|
| 118 | int maxProbClassIndex = 0;
|
---|
| 119 | double maxProb = y[0];
|
---|
| 120 | for (int i = 1; i < y.Length; i++) {
|
---|
| 121 | if (maxProb < y[i]) {
|
---|
| 122 | maxProb = y[i];
|
---|
| 123 | maxProbClassIndex = i;
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 | yield return classValues[maxProbClassIndex];
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[17054] | 130 |
|
---|
| 131 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
| 132 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
| 136 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
| 137 |
|
---|
| 138 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
| 139 | if (regressionProblemData != null)
|
---|
| 140 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
| 141 |
|
---|
| 142 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
| 143 | if (classificationProblemData != null)
|
---|
| 144 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
| 145 |
|
---|
| 146 | throw new ArgumentException("The problem data is not compatible with this neural network ensemble. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
| 147 | }
|
---|
| 148 |
|
---|
[14027] | 149 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 150 | return new NeuralNetworkEnsembleRegressionSolution(this, new RegressionEnsembleProblemData(problemData));
|
---|
[6603] | 151 | }
|
---|
[14027] | 152 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 153 | return new NeuralNetworkEnsembleClassificationSolution(this, new ClassificationEnsembleProblemData(problemData));
|
---|
[6603] | 154 | }
|
---|
[17105] | 155 |
|
---|
[6577] | 156 | #region persistence
|
---|
| 157 | [Storable]
|
---|
[7694] | 158 | private string MultiLayerPerceptronEnsembleNetwork {
|
---|
[6577] | 159 | get {
|
---|
[7694] | 160 | string serializedNetwork;
|
---|
| 161 | alglib.mlpeserialize(this.mlpEnsemble, out serializedNetwork);
|
---|
| 162 | return serializedNetwork;
|
---|
[6577] | 163 | }
|
---|
| 164 | set {
|
---|
[7694] | 165 | alglib.mlpeunserialize(value, out this.mlpEnsemble);
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | [Storable]
|
---|
| 170 | private double[] MultiLayerPerceptronEnsembleColumnMeans {
|
---|
| 171 | get { return mlpEnsemble.innerobj.columnmeans; }
|
---|
| 172 | set {
|
---|
[6580] | 173 | mlpEnsemble.innerobj.columnmeans = value;
|
---|
[7694] | 174 | mlpEnsemble.innerobj.network.columnmeans = value;
|
---|
[6577] | 175 | }
|
---|
| 176 | }
|
---|
| 177 | [Storable]
|
---|
[6580] | 178 | private double[] MultiLayerPerceptronEnsembleColumnSigmas {
|
---|
[7694] | 179 | get { return mlpEnsemble.innerobj.columnsigmas; }
|
---|
[6577] | 180 | set {
|
---|
[6580] | 181 | mlpEnsemble.innerobj.columnsigmas = value;
|
---|
[7694] | 182 | mlpEnsemble.innerobj.network.columnsigmas = value;
|
---|
[6577] | 183 | }
|
---|
| 184 | }
|
---|
[17105] | 185 | [Storable(OldName = "MultiLayerPerceptronEnsembleDfdnet")]
|
---|
[6580] | 186 | private double[] MultiLayerPerceptronEnsembleDfdnet {
|
---|
[6577] | 187 | set {
|
---|
[7694] | 188 | mlpEnsemble.innerobj.network.dfdnet = value;
|
---|
[6577] | 189 | }
|
---|
| 190 | }
|
---|
| 191 | [Storable]
|
---|
[6580] | 192 | private int MultiLayerPerceptronEnsembleSize {
|
---|
[7694] | 193 | get { return mlpEnsemble.innerobj.ensemblesize; }
|
---|
[6577] | 194 | set {
|
---|
[6580] | 195 | mlpEnsemble.innerobj.ensemblesize = value;
|
---|
[7694] | 196 | mlpEnsemble.innerobj.ensemblesize = value;
|
---|
[6577] | 197 | }
|
---|
| 198 | }
|
---|
[17105] | 199 | [Storable(OldName = "MultiLayerPerceptronEnsembleNeurons")]
|
---|
[6580] | 200 | private double[] MultiLayerPerceptronEnsembleNeurons {
|
---|
[7694] | 201 | set { mlpEnsemble.innerobj.network.neurons = value; }
|
---|
[6577] | 202 | }
|
---|
[17105] | 203 | [Storable(OldName = "MultiLayerPerceptronEnsembleSerializedMlp")]
|
---|
[6580] | 204 | private double[] MultiLayerPerceptronEnsembleSerializedMlp {
|
---|
| 205 | set {
|
---|
[7694] | 206 | mlpEnsemble.innerobj.network.dfdnet = value;
|
---|
[6580] | 207 | }
|
---|
| 208 | }
|
---|
[17105] | 209 | [Storable(OldName = "MultiLayerPerceptronStuctinfo")]
|
---|
[6577] | 210 | private int[] MultiLayerPerceptronStuctinfo {
|
---|
| 211 | set {
|
---|
[7694] | 212 | mlpEnsemble.innerobj.network.structinfo = value;
|
---|
[6577] | 213 | }
|
---|
| 214 | }
|
---|
[6580] | 215 |
|
---|
| 216 | [Storable]
|
---|
| 217 | private double[] MultiLayerPerceptronWeights {
|
---|
| 218 | get {
|
---|
| 219 | return mlpEnsemble.innerobj.weights;
|
---|
| 220 | }
|
---|
| 221 | set {
|
---|
| 222 | mlpEnsemble.innerobj.weights = value;
|
---|
[7694] | 223 | mlpEnsemble.innerobj.network.weights = value;
|
---|
[6580] | 224 | }
|
---|
| 225 | }
|
---|
| 226 | [Storable]
|
---|
[6577] | 227 | private double[] MultiLayerPerceptronY {
|
---|
| 228 | get {
|
---|
[6580] | 229 | return mlpEnsemble.innerobj.y;
|
---|
[6577] | 230 | }
|
---|
| 231 | set {
|
---|
[6580] | 232 | mlpEnsemble.innerobj.y = value;
|
---|
[7694] | 233 | mlpEnsemble.innerobj.network.y = value;
|
---|
[6577] | 234 | }
|
---|
| 235 | }
|
---|
| 236 | #endregion
|
---|
| 237 | }
|
---|
| 238 | }
|
---|