Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleModel.cs @ 16189

Last change on this file since 16189 was 15584, checked in by swagner, 7 years ago

#2640: Updated year of copyrights in license headers on stable

File size: 8.0 KB
RevLine 
[6577]1#region License Information
2/* HeuristicLab
[15584]3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[6577]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis;
29
30namespace HeuristicLab.Algorithms.DataAnalysis {
31  /// <summary>
[6580]32  /// Represents a neural network ensembel model for regression and classification
[6577]33  /// </summary>
34  [StorableClass]
[6580]35  [Item("NeuralNetworkEnsembleModel", "Represents a neural network ensemble for regression and classification.")]
[14027]36  public sealed class NeuralNetworkEnsembleModel : ClassificationModel, INeuralNetworkEnsembleModel {
[6577]37
[6580]38    private alglib.mlpensemble mlpEnsemble;
39    public alglib.mlpensemble MultiLayerPerceptronEnsemble {
40      get { return mlpEnsemble; }
[6577]41      set {
[6580]42        if (value != mlpEnsemble) {
[6577]43          if (value == null) throw new ArgumentNullException();
[6580]44          mlpEnsemble = value;
[6577]45          OnChanged(EventArgs.Empty);
46        }
47      }
48    }
49
[14027]50    public override IEnumerable<string> VariablesUsedForPrediction {
51      get { return allowedInputVariables; }
52    }
53
[6577]54    [Storable]
55    private string targetVariable;
56    [Storable]
57    private string[] allowedInputVariables;
58    [Storable]
59    private double[] classValues;
60    [StorableConstructor]
[6580]61    private NeuralNetworkEnsembleModel(bool deserializing)
[6577]62      : base(deserializing) {
63      if (deserializing)
[6580]64        mlpEnsemble = new alglib.mlpensemble();
[6577]65    }
[6580]66    private NeuralNetworkEnsembleModel(NeuralNetworkEnsembleModel original, Cloner cloner)
[6577]67      : base(original, cloner) {
[6580]68      mlpEnsemble = new alglib.mlpensemble();
[7694]69      string serializedEnsemble;
70      alglib.mlpeserialize(original.mlpEnsemble, out serializedEnsemble);
71      alglib.mlpeunserialize(serializedEnsemble, out this.mlpEnsemble);
[6577]72      targetVariable = original.targetVariable;
73      allowedInputVariables = (string[])original.allowedInputVariables.Clone();
74      if (original.classValues != null)
75        this.classValues = (double[])original.classValues.Clone();
76    }
[6580]77    public NeuralNetworkEnsembleModel(alglib.mlpensemble mlpEnsemble, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
[14027]78      : base(targetVariable) {
[6577]79      this.name = ItemName;
80      this.description = ItemDescription;
[6580]81      this.mlpEnsemble = mlpEnsemble;
[6577]82      this.targetVariable = targetVariable;
83      this.allowedInputVariables = allowedInputVariables.ToArray();
84      if (classValues != null)
85        this.classValues = (double[])classValues.Clone();
86    }
87
88    public override IDeepCloneable Clone(Cloner cloner) {
[6580]89      return new NeuralNetworkEnsembleModel(this, cloner);
[6577]90    }
91
[12702]92    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
[15142]93      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
[6577]94
95      int n = inputData.GetLength(0);
96      int columns = inputData.GetLength(1);
97      double[] x = new double[columns];
98      double[] y = new double[1];
99
100      for (int row = 0; row < n; row++) {
101        for (int column = 0; column < columns; column++) {
102          x[column] = inputData[row, column];
103        }
[6580]104        alglib.mlpeprocess(mlpEnsemble, x, ref y);
[6577]105        yield return y[0];
106      }
107    }
108
[14027]109    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
[15142]110      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
[6577]111
112      int n = inputData.GetLength(0);
113      int columns = inputData.GetLength(1);
114      double[] x = new double[columns];
115      double[] y = new double[classValues.Length];
116
117      for (int row = 0; row < n; row++) {
118        for (int column = 0; column < columns; column++) {
119          x[column] = inputData[row, column];
120        }
[6580]121        alglib.mlpeprocess(mlpEnsemble, x, ref y);
[6577]122        // find class for with the largest probability value
123        int maxProbClassIndex = 0;
124        double maxProb = y[0];
125        for (int i = 1; i < y.Length; i++) {
126          if (maxProb < y[i]) {
127            maxProb = y[i];
128            maxProbClassIndex = i;
129          }
130        }
131        yield return classValues[maxProbClassIndex];
132      }
133    }
134
[14027]135    public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
136      return new NeuralNetworkEnsembleRegressionSolution(this, new RegressionEnsembleProblemData(problemData));
[6603]137    }
[14027]138    public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
139      return new NeuralNetworkEnsembleClassificationSolution(this, new ClassificationEnsembleProblemData(problemData));
[6603]140    }
141
[6577]142    #region events
143    public event EventHandler Changed;
144    private void OnChanged(EventArgs e) {
145      var handlers = Changed;
146      if (handlers != null)
147        handlers(this, e);
148    }
149    #endregion
150
151    #region persistence
152    [Storable]
[7694]153    private string MultiLayerPerceptronEnsembleNetwork {
[6577]154      get {
[7694]155        string serializedNetwork;
156        alglib.mlpeserialize(this.mlpEnsemble, out serializedNetwork);
157        return serializedNetwork;
[6577]158      }
159      set {
[7694]160        alglib.mlpeunserialize(value, out this.mlpEnsemble);
161      }
162    }
163
164    [Storable]
165    private double[] MultiLayerPerceptronEnsembleColumnMeans {
166      get { return mlpEnsemble.innerobj.columnmeans; }
167      set {
[6580]168        mlpEnsemble.innerobj.columnmeans = value;
[7694]169        mlpEnsemble.innerobj.network.columnmeans = value;
[6577]170      }
171    }
172    [Storable]
[6580]173    private double[] MultiLayerPerceptronEnsembleColumnSigmas {
[7694]174      get { return mlpEnsemble.innerobj.columnsigmas; }
[6577]175      set {
[6580]176        mlpEnsemble.innerobj.columnsigmas = value;
[7694]177        mlpEnsemble.innerobj.network.columnsigmas = value;
[6577]178      }
179    }
[7694]180    [Storable(AllowOneWay = true)]
[6580]181    private double[] MultiLayerPerceptronEnsembleDfdnet {
[6577]182      set {
[7694]183        mlpEnsemble.innerobj.network.dfdnet = value;
[6577]184      }
185    }
186    [Storable]
[6580]187    private int MultiLayerPerceptronEnsembleSize {
[7694]188      get { return mlpEnsemble.innerobj.ensemblesize; }
[6577]189      set {
[6580]190        mlpEnsemble.innerobj.ensemblesize = value;
[7694]191        mlpEnsemble.innerobj.ensemblesize = value;
[6577]192      }
193    }
[7694]194    [Storable(AllowOneWay = true)]
[6580]195    private double[] MultiLayerPerceptronEnsembleNeurons {
[7694]196      set { mlpEnsemble.innerobj.network.neurons = value; }
[6577]197    }
[7694]198    [Storable(AllowOneWay = true)]
[6580]199    private double[] MultiLayerPerceptronEnsembleSerializedMlp {
200      set {
[7694]201        mlpEnsemble.innerobj.network.dfdnet = value;
[6580]202      }
203    }
[7694]204    [Storable(AllowOneWay = true)]
[6577]205    private int[] MultiLayerPerceptronStuctinfo {
206      set {
[7694]207        mlpEnsemble.innerobj.network.structinfo = value;
[6577]208      }
209    }
[6580]210
211    [Storable]
212    private double[] MultiLayerPerceptronWeights {
213      get {
214        return mlpEnsemble.innerobj.weights;
215      }
216      set {
217        mlpEnsemble.innerobj.weights = value;
[7694]218        mlpEnsemble.innerobj.network.weights = value;
[6580]219      }
220    }
221    [Storable]
[6577]222    private double[] MultiLayerPerceptronY {
223      get {
[6580]224        return mlpEnsemble.innerobj.y;
[6577]225      }
226      set {
[6580]227        mlpEnsemble.innerobj.y = value;
[7694]228        mlpEnsemble.innerobj.network.y = value;
[6577]229      }
230    }
231    #endregion
232  }
233}
Note: See TracBrowser for help on using the repository browser.