[6577] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6577] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
[6580] | 32 | /// Represents a neural network ensembel model for regression and classification
|
---|
[6577] | 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
[6580] | 35 | [Item("NeuralNetworkEnsembleModel", "Represents a neural network ensemble for regression and classification.")]
|
---|
| 36 | public sealed class NeuralNetworkEnsembleModel : NamedItem, INeuralNetworkEnsembleModel {
|
---|
[6577] | 37 |
|
---|
[6580] | 38 | private alglib.mlpensemble mlpEnsemble;
|
---|
| 39 | public alglib.mlpensemble MultiLayerPerceptronEnsemble {
|
---|
| 40 | get { return mlpEnsemble; }
|
---|
[6577] | 41 | set {
|
---|
[6580] | 42 | if (value != mlpEnsemble) {
|
---|
[6577] | 43 | if (value == null) throw new ArgumentNullException();
|
---|
[6580] | 44 | mlpEnsemble = value;
|
---|
[6577] | 45 | OnChanged(EventArgs.Empty);
|
---|
| 46 | }
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | [Storable]
|
---|
| 51 | private string targetVariable;
|
---|
| 52 | [Storable]
|
---|
| 53 | private string[] allowedInputVariables;
|
---|
| 54 | [Storable]
|
---|
| 55 | private double[] classValues;
|
---|
| 56 | [StorableConstructor]
|
---|
[6580] | 57 | private NeuralNetworkEnsembleModel(bool deserializing)
|
---|
[6577] | 58 | : base(deserializing) {
|
---|
| 59 | if (deserializing)
|
---|
[6580] | 60 | mlpEnsemble = new alglib.mlpensemble();
|
---|
[6577] | 61 | }
|
---|
[6580] | 62 | private NeuralNetworkEnsembleModel(NeuralNetworkEnsembleModel original, Cloner cloner)
|
---|
[6577] | 63 | : base(original, cloner) {
|
---|
[6580] | 64 | mlpEnsemble = new alglib.mlpensemble();
|
---|
[7694] | 65 | string serializedEnsemble;
|
---|
| 66 | alglib.mlpeserialize(original.mlpEnsemble, out serializedEnsemble);
|
---|
| 67 | alglib.mlpeunserialize(serializedEnsemble, out this.mlpEnsemble);
|
---|
[6577] | 68 | targetVariable = original.targetVariable;
|
---|
| 69 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
| 70 | if (original.classValues != null)
|
---|
| 71 | this.classValues = (double[])original.classValues.Clone();
|
---|
| 72 | }
|
---|
[6580] | 73 | public NeuralNetworkEnsembleModel(alglib.mlpensemble mlpEnsemble, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
[6577] | 74 | : base() {
|
---|
| 75 | this.name = ItemName;
|
---|
| 76 | this.description = ItemDescription;
|
---|
[6580] | 77 | this.mlpEnsemble = mlpEnsemble;
|
---|
[6577] | 78 | this.targetVariable = targetVariable;
|
---|
| 79 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 80 | if (classValues != null)
|
---|
| 81 | this.classValues = (double[])classValues.Clone();
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[6580] | 85 | return new NeuralNetworkEnsembleModel(this, cloner);
|
---|
[6577] | 86 | }
|
---|
| 87 |
|
---|
| 88 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 89 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
| 90 |
|
---|
| 91 | int n = inputData.GetLength(0);
|
---|
| 92 | int columns = inputData.GetLength(1);
|
---|
| 93 | double[] x = new double[columns];
|
---|
| 94 | double[] y = new double[1];
|
---|
| 95 |
|
---|
| 96 | for (int row = 0; row < n; row++) {
|
---|
| 97 | for (int column = 0; column < columns; column++) {
|
---|
| 98 | x[column] = inputData[row, column];
|
---|
| 99 | }
|
---|
[6580] | 100 | alglib.mlpeprocess(mlpEnsemble, x, ref y);
|
---|
[6577] | 101 | yield return y[0];
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 106 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
| 107 |
|
---|
| 108 | int n = inputData.GetLength(0);
|
---|
| 109 | int columns = inputData.GetLength(1);
|
---|
| 110 | double[] x = new double[columns];
|
---|
| 111 | double[] y = new double[classValues.Length];
|
---|
| 112 |
|
---|
| 113 | for (int row = 0; row < n; row++) {
|
---|
| 114 | for (int column = 0; column < columns; column++) {
|
---|
| 115 | x[column] = inputData[row, column];
|
---|
| 116 | }
|
---|
[6580] | 117 | alglib.mlpeprocess(mlpEnsemble, x, ref y);
|
---|
[6577] | 118 | // find class for with the largest probability value
|
---|
| 119 | int maxProbClassIndex = 0;
|
---|
| 120 | double maxProb = y[0];
|
---|
| 121 | for (int i = 1; i < y.Length; i++) {
|
---|
| 122 | if (maxProb < y[i]) {
|
---|
| 123 | maxProb = y[i];
|
---|
| 124 | maxProbClassIndex = i;
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 | yield return classValues[maxProbClassIndex];
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
[6603] | 131 | public INeuralNetworkEnsembleRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[8528] | 132 | return new NeuralNetworkEnsembleRegressionSolution(new RegressionEnsembleProblemData(problemData), this);
|
---|
[6603] | 133 | }
|
---|
| 134 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 135 | return CreateRegressionSolution(problemData);
|
---|
| 136 | }
|
---|
[6604] | 137 | public INeuralNetworkEnsembleClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
[8528] | 138 | return new NeuralNetworkEnsembleClassificationSolution(new ClassificationEnsembleProblemData(problemData), this);
|
---|
[6604] | 139 | }
|
---|
| 140 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 141 | return CreateClassificationSolution(problemData);
|
---|
| 142 | }
|
---|
[6603] | 143 |
|
---|
[6577] | 144 | #region events
|
---|
| 145 | public event EventHandler Changed;
|
---|
| 146 | private void OnChanged(EventArgs e) {
|
---|
| 147 | var handlers = Changed;
|
---|
| 148 | if (handlers != null)
|
---|
| 149 | handlers(this, e);
|
---|
| 150 | }
|
---|
| 151 | #endregion
|
---|
| 152 |
|
---|
| 153 | #region persistence
|
---|
| 154 | [Storable]
|
---|
[7694] | 155 | private string MultiLayerPerceptronEnsembleNetwork {
|
---|
[6577] | 156 | get {
|
---|
[7694] | 157 | string serializedNetwork;
|
---|
| 158 | alglib.mlpeserialize(this.mlpEnsemble, out serializedNetwork);
|
---|
| 159 | return serializedNetwork;
|
---|
[6577] | 160 | }
|
---|
| 161 | set {
|
---|
[7694] | 162 | alglib.mlpeunserialize(value, out this.mlpEnsemble);
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | [Storable]
|
---|
| 167 | private double[] MultiLayerPerceptronEnsembleColumnMeans {
|
---|
| 168 | get { return mlpEnsemble.innerobj.columnmeans; }
|
---|
| 169 | set {
|
---|
[6580] | 170 | mlpEnsemble.innerobj.columnmeans = value;
|
---|
[7694] | 171 | mlpEnsemble.innerobj.network.columnmeans = value;
|
---|
[6577] | 172 | }
|
---|
| 173 | }
|
---|
| 174 | [Storable]
|
---|
[6580] | 175 | private double[] MultiLayerPerceptronEnsembleColumnSigmas {
|
---|
[7694] | 176 | get { return mlpEnsemble.innerobj.columnsigmas; }
|
---|
[6577] | 177 | set {
|
---|
[6580] | 178 | mlpEnsemble.innerobj.columnsigmas = value;
|
---|
[7694] | 179 | mlpEnsemble.innerobj.network.columnsigmas = value;
|
---|
[6577] | 180 | }
|
---|
| 181 | }
|
---|
[7694] | 182 | [Storable(AllowOneWay = true)]
|
---|
[6580] | 183 | private double[] MultiLayerPerceptronEnsembleDfdnet {
|
---|
[6577] | 184 | set {
|
---|
[7694] | 185 | mlpEnsemble.innerobj.network.dfdnet = value;
|
---|
[6577] | 186 | }
|
---|
| 187 | }
|
---|
| 188 | [Storable]
|
---|
[6580] | 189 | private int MultiLayerPerceptronEnsembleSize {
|
---|
[7694] | 190 | get { return mlpEnsemble.innerobj.ensemblesize; }
|
---|
[6577] | 191 | set {
|
---|
[6580] | 192 | mlpEnsemble.innerobj.ensemblesize = value;
|
---|
[7694] | 193 | mlpEnsemble.innerobj.ensemblesize = value;
|
---|
[6577] | 194 | }
|
---|
| 195 | }
|
---|
[7694] | 196 | [Storable(AllowOneWay = true)]
|
---|
[6580] | 197 | private double[] MultiLayerPerceptronEnsembleNeurons {
|
---|
[7694] | 198 | set { mlpEnsemble.innerobj.network.neurons = value; }
|
---|
[6577] | 199 | }
|
---|
[7694] | 200 | [Storable(AllowOneWay = true)]
|
---|
[6580] | 201 | private double[] MultiLayerPerceptronEnsembleSerializedMlp {
|
---|
| 202 | set {
|
---|
[7694] | 203 | mlpEnsemble.innerobj.network.dfdnet = value;
|
---|
[6580] | 204 | }
|
---|
| 205 | }
|
---|
[7694] | 206 | [Storable(AllowOneWay = true)]
|
---|
[6577] | 207 | private int[] MultiLayerPerceptronStuctinfo {
|
---|
| 208 | set {
|
---|
[7694] | 209 | mlpEnsemble.innerobj.network.structinfo = value;
|
---|
[6577] | 210 | }
|
---|
| 211 | }
|
---|
[6580] | 212 |
|
---|
| 213 | [Storable]
|
---|
| 214 | private double[] MultiLayerPerceptronWeights {
|
---|
| 215 | get {
|
---|
| 216 | return mlpEnsemble.innerobj.weights;
|
---|
| 217 | }
|
---|
| 218 | set {
|
---|
| 219 | mlpEnsemble.innerobj.weights = value;
|
---|
[7694] | 220 | mlpEnsemble.innerobj.network.weights = value;
|
---|
[6580] | 221 | }
|
---|
| 222 | }
|
---|
| 223 | [Storable]
|
---|
[6577] | 224 | private double[] MultiLayerPerceptronY {
|
---|
| 225 | get {
|
---|
[6580] | 226 | return mlpEnsemble.innerobj.y;
|
---|
[6577] | 227 | }
|
---|
| 228 | set {
|
---|
[6580] | 229 | mlpEnsemble.innerobj.y = value;
|
---|
[7694] | 230 | mlpEnsemble.innerobj.network.y = value;
|
---|
[6577] | 231 | }
|
---|
| 232 | }
|
---|
| 233 | #endregion
|
---|
| 234 | }
|
---|
| 235 | }
|
---|