[9270] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9270] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 33 | [Item("NcaModelCreator", "Creates an NCA model with a given matrix.")]
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public class NcaModelCreator : SingleSuccessorOperator, INcaModelCreator {
|
---|
| 36 |
|
---|
| 37 | public ILookupParameter<IntValue> KParameter {
|
---|
| 38 | get { return (ILookupParameter<IntValue>)Parameters["K"]; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | public ILookupParameter<IntValue> DimensionsParameter {
|
---|
| 42 | get { return (ILookupParameter<IntValue>)Parameters["Dimensions"]; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | public ILookupParameter<RealVector> NcaMatrixParameter {
|
---|
| 46 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrix"]; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public ILookupParameter<RealVector> NcaMatrixGradientsParameter {
|
---|
| 50 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrixGradients"]; }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
| 54 | get { return (ILookupParameter<IClassificationProblemData>)Parameters["ProblemData"]; }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public ILookupParameter<INcaModel> NcaModelParameter {
|
---|
| 58 | get { return (ILookupParameter<INcaModel>)Parameters["NcaModel"]; }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | [StorableConstructor]
|
---|
| 62 | protected NcaModelCreator(bool deserializing) : base(deserializing) { }
|
---|
| 63 | protected NcaModelCreator(NcaModelCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 64 | public NcaModelCreator() {
|
---|
| 65 | Parameters.Add(new LookupParameter<IntValue>("K", "How many neighbors should be considered for classification."));
|
---|
| 66 | Parameters.Add(new LookupParameter<IntValue>("Dimensions", "The dimensions to which the feature space should be reduced to."));
|
---|
| 67 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrix", "The optimized matrix."));
|
---|
| 68 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrixGradients", "The gradients from the matrix that is being optimized."));
|
---|
| 69 | Parameters.Add(new LookupParameter<IClassificationProblemData>("ProblemData", "The classification problem data."));
|
---|
| 70 | Parameters.Add(new LookupParameter<INcaModel>("NcaModel", "The NCA model that should be created."));
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 74 | return new NcaModelCreator(this, cloner);
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | public override IOperation Apply() {
|
---|
| 78 | var k = KParameter.ActualValue.Value;
|
---|
| 79 | var dim = DimensionsParameter.ActualValue.Value;
|
---|
| 80 | var vector = NcaMatrixParameter.ActualValue;
|
---|
| 81 | var matrix = new double[vector.Length / dim, dim];
|
---|
| 82 |
|
---|
| 83 | for (int i = 0; i < matrix.GetLength(0); i++)
|
---|
| 84 | for (int j = 0; j < dim; j++) {
|
---|
| 85 | matrix[i, j] = vector[i * dim + j];
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | var problemData = ProblemDataParameter.ActualValue;
|
---|
[9272] | 89 | NcaModelParameter.ActualValue = new NcaModel(k, matrix, problemData.Dataset, problemData.TrainingIndices, problemData.TargetVariable, problemData.AllowedInputVariables, problemData.ClassValues.ToArray());
|
---|
[9270] | 90 | return base.Apply();
|
---|
| 91 | }
|
---|
| 92 | }
|
---|
| 93 | }
|
---|