1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HEAL.Attic;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
29 | [Item("LDA", "Initializes the matrix by performing a linear discriminant analysis.")]
|
---|
30 | [StorableType("587DE65A-4BAD-4AC7-8C99-A9DE2B2A7B19")]
|
---|
31 | public class LdaInitializer : NcaInitializer {
|
---|
32 |
|
---|
33 | [StorableConstructor]
|
---|
34 | protected LdaInitializer(StorableConstructorFlag _) : base(_) { }
|
---|
35 | protected LdaInitializer(LdaInitializer original, Cloner cloner) : base(original, cloner) { }
|
---|
36 | public LdaInitializer() : base() { }
|
---|
37 |
|
---|
38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
39 | return new LdaInitializer(this, cloner);
|
---|
40 | }
|
---|
41 |
|
---|
42 | public override double[,] Initialize(IClassificationProblemData data, int dimensions) {
|
---|
43 | var instances = data.TrainingIndices.Count();
|
---|
44 | var attributes = data.AllowedInputVariables.Count();
|
---|
45 |
|
---|
46 | var ldaDs = data.Dataset.ToArray(
|
---|
47 | data.AllowedInputVariables.Concat(data.TargetVariable.ToEnumerable()),
|
---|
48 | data.TrainingIndices);
|
---|
49 |
|
---|
50 | // map class values to sequential natural numbers (required by alglib)
|
---|
51 | var uniqueClasses = data.Dataset.GetDoubleValues(data.TargetVariable, data.TrainingIndices)
|
---|
52 | .Distinct()
|
---|
53 | .Select((v, i) => new { v, i })
|
---|
54 | .ToDictionary(x => x.v, x => x.i);
|
---|
55 |
|
---|
56 | for (int row = 0; row < instances; row++)
|
---|
57 | ldaDs[row, attributes] = uniqueClasses[ldaDs[row, attributes]];
|
---|
58 |
|
---|
59 | int info;
|
---|
60 | double[,] matrix;
|
---|
61 | alglib.fisherldan(ldaDs, instances, attributes, uniqueClasses.Count, out info, out matrix);
|
---|
62 |
|
---|
63 | return matrix;
|
---|
64 | }
|
---|
65 |
|
---|
66 | }
|
---|
67 | }
|
---|