1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
28 | [StorableClass]
|
---|
29 | [Item("CircularKernel", "A circular kernel function 2*pi*(acos(-d)-d*(1-d²)^(0.5)) where n = ||x-c|| and d = n/beta \n As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")]
|
---|
30 | public class CircularKernel : KernelBase {
|
---|
31 | [StorableConstructor]
|
---|
32 | protected CircularKernel(bool deserializing) : base(deserializing) { }
|
---|
33 |
|
---|
34 | protected CircularKernel(CircularKernel original, Cloner cloner) : base(original, cloner) { }
|
---|
35 |
|
---|
36 | public CircularKernel() { }
|
---|
37 |
|
---|
38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
39 | return new CircularKernel(this, cloner);
|
---|
40 | }
|
---|
41 |
|
---|
42 | protected override double Get(double norm) {
|
---|
43 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance while Beta is null");
|
---|
44 | var beta = Beta.Value;
|
---|
45 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
46 | if (norm >= beta) return 0;
|
---|
47 | var d = norm / beta;
|
---|
48 | return 2 * Math.PI * (Math.Acos(-d) - d * Math.Sqrt(1 - d * d));
|
---|
49 | }
|
---|
50 |
|
---|
51 | // 4*pi*n^3 / (beta^4 * sqrt(1-n^2/beta^2)
|
---|
52 | protected override double GetGradient(double norm) {
|
---|
53 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance gradient while Beta is null");
|
---|
54 | var beta = Beta.Value;
|
---|
55 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
56 | if (beta < norm) return 0;
|
---|
57 | var d = norm / beta;
|
---|
58 | return -4 * Math.PI * d * d * d / beta * Math.Sqrt(1 - d * d);
|
---|
59 | }
|
---|
60 | }
|
---|
61 | }
|
---|