[8401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8401] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[8612] | 21 |
|
---|
[8366] | 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[8612] | 26 | using HeuristicLab.Data;
|
---|
[8982] | 27 | using HeuristicLab.Parameters;
|
---|
[8366] | 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
[8371] | 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8366] | 31 | [StorableClass]
|
---|
| 32 | [Item(Name = "MeanLinear", Description = "Linear mean function for Gaussian processes.")]
|
---|
[8612] | 33 | public sealed class MeanLinear : ParameterizedNamedItem, IMeanFunction {
|
---|
[8982] | 34 | public IValueParameter<DoubleArray> WeightsParameter {
|
---|
| 35 | get { return (IValueParameter<DoubleArray>)Parameters["Weights"]; }
|
---|
| 36 | }
|
---|
[8612] | 37 |
|
---|
[8366] | 38 | [StorableConstructor]
|
---|
[8612] | 39 | private MeanLinear(bool deserializing) : base(deserializing) { }
|
---|
| 40 | private MeanLinear(MeanLinear original, Cloner cloner)
|
---|
[8366] | 41 | : base(original, cloner) {
|
---|
| 42 | }
|
---|
| 43 | public MeanLinear()
|
---|
| 44 | : base() {
|
---|
[8982] | 45 | Parameters.Add(new OptionalValueParameter<DoubleArray>("Weights", "The weights parameter for the linear mean function."));
|
---|
[8366] | 46 | }
|
---|
| 47 |
|
---|
[8612] | 48 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 49 | return new MeanLinear(this, cloner);
|
---|
[8366] | 50 | }
|
---|
[8612] | 51 |
|
---|
| 52 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[8982] | 53 | return WeightsParameter.Value != null ? 0 : numberOfVariables;
|
---|
[8612] | 54 | }
|
---|
| 55 |
|
---|
[8982] | 56 | public void SetParameter(double[] p) {
|
---|
| 57 | double[] weights;
|
---|
| 58 | GetParameter(p, out weights);
|
---|
| 59 | WeightsParameter.Value = new DoubleArray(weights);
|
---|
[8612] | 60 | }
|
---|
| 61 |
|
---|
[8982] | 62 | public void GetParameter(double[] p, out double[] weights) {
|
---|
| 63 | if (WeightsParameter.Value == null) {
|
---|
| 64 | weights = p;
|
---|
| 65 | } else {
|
---|
| 66 | if (p.Length != 0) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for the linear mean function.", "p");
|
---|
| 67 | weights = WeightsParameter.Value.ToArray();
|
---|
| 68 | }
|
---|
[8366] | 69 | }
|
---|
| 70 |
|
---|
[13981] | 71 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, int[] columnIndices) {
|
---|
[8982] | 72 | double[] weights;
|
---|
[13981] | 73 | int[] columns = columnIndices;
|
---|
[8982] | 74 | GetParameter(p, out weights);
|
---|
| 75 | var mf = new ParameterizedMeanFunction();
|
---|
| 76 | mf.Mean = (x, i) => {
|
---|
| 77 | // sanity check
|
---|
| 78 | if (weights.Length != columns.Length) throw new ArgumentException("The number of rparameters must match the number of variables for the linear mean function.");
|
---|
[13981] | 79 | return Util.ScalarProd(weights, Util.GetRow(x, i, columns).ToArray());
|
---|
[8982] | 80 | };
|
---|
| 81 | mf.Gradient = (x, i, k) => {
|
---|
| 82 | if (k > columns.Length) throw new ArgumentException();
|
---|
| 83 | return x[i, columns[k]];
|
---|
| 84 | };
|
---|
| 85 | return mf;
|
---|
[8366] | 86 | }
|
---|
| 87 | }
|
---|
| 88 | }
|
---|