[8401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11170] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8401] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[8612] | 21 |
|
---|
[8366] | 22 | using System;
|
---|
[8982] | 23 | using System.Collections.Generic;
|
---|
[8366] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8612] | 27 | using HeuristicLab.Data;
|
---|
[8982] | 28 | using HeuristicLab.Parameters;
|
---|
[8366] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
[8371] | 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8366] | 32 | [StorableClass]
|
---|
| 33 | [Item(Name = "MeanLinear", Description = "Linear mean function for Gaussian processes.")]
|
---|
[8612] | 34 | public sealed class MeanLinear : ParameterizedNamedItem, IMeanFunction {
|
---|
[8982] | 35 | public IValueParameter<DoubleArray> WeightsParameter {
|
---|
| 36 | get { return (IValueParameter<DoubleArray>)Parameters["Weights"]; }
|
---|
| 37 | }
|
---|
[8612] | 38 |
|
---|
[8366] | 39 | [StorableConstructor]
|
---|
[8612] | 40 | private MeanLinear(bool deserializing) : base(deserializing) { }
|
---|
| 41 | private MeanLinear(MeanLinear original, Cloner cloner)
|
---|
[8366] | 42 | : base(original, cloner) {
|
---|
| 43 | }
|
---|
| 44 | public MeanLinear()
|
---|
| 45 | : base() {
|
---|
[8982] | 46 | Parameters.Add(new OptionalValueParameter<DoubleArray>("Weights", "The weights parameter for the linear mean function."));
|
---|
[8366] | 47 | }
|
---|
| 48 |
|
---|
[8612] | 49 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 50 | return new MeanLinear(this, cloner);
|
---|
[8366] | 51 | }
|
---|
[8612] | 52 |
|
---|
| 53 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[8982] | 54 | return WeightsParameter.Value != null ? 0 : numberOfVariables;
|
---|
[8612] | 55 | }
|
---|
| 56 |
|
---|
[8982] | 57 | public void SetParameter(double[] p) {
|
---|
| 58 | double[] weights;
|
---|
| 59 | GetParameter(p, out weights);
|
---|
| 60 | WeightsParameter.Value = new DoubleArray(weights);
|
---|
[8612] | 61 | }
|
---|
| 62 |
|
---|
[8982] | 63 | public void GetParameter(double[] p, out double[] weights) {
|
---|
| 64 | if (WeightsParameter.Value == null) {
|
---|
| 65 | weights = p;
|
---|
| 66 | } else {
|
---|
| 67 | if (p.Length != 0) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for the linear mean function.", "p");
|
---|
| 68 | weights = WeightsParameter.Value.ToArray();
|
---|
| 69 | }
|
---|
[8366] | 70 | }
|
---|
| 71 |
|
---|
[8982] | 72 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 73 | double[] weights;
|
---|
| 74 | int[] columns = columnIndices.ToArray();
|
---|
| 75 | GetParameter(p, out weights);
|
---|
| 76 | var mf = new ParameterizedMeanFunction();
|
---|
| 77 | mf.Mean = (x, i) => {
|
---|
| 78 | // sanity check
|
---|
| 79 | if (weights.Length != columns.Length) throw new ArgumentException("The number of rparameters must match the number of variables for the linear mean function.");
|
---|
| 80 | return Util.ScalarProd(weights, Util.GetRow(x, i, columns));
|
---|
| 81 | };
|
---|
| 82 | mf.Gradient = (x, i, k) => {
|
---|
| 83 | if (k > columns.Length) throw new ArgumentException();
|
---|
| 84 | return x[i, columns[k]];
|
---|
| 85 | };
|
---|
| 86 | return mf;
|
---|
[8366] | 87 | }
|
---|
| 88 | }
|
---|
| 89 | }
|
---|