1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HEAL.Attic;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | [StorableType("D251400A-4DCA-4500-9738-CE3B7BF96B0D")]
|
---|
33 | [Item(Name = "CovarianceMaternIso",
|
---|
34 | Description = "Matern covariance function for Gaussian processes.")]
|
---|
35 | public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction {
|
---|
36 | public IValueParameter<DoubleValue> InverseLengthParameter {
|
---|
37 | get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
41 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public IConstrainedValueParameter<IntValue> DParameter {
|
---|
45 | get { return (IConstrainedValueParameter<IntValue>)Parameters["D"]; }
|
---|
46 | }
|
---|
47 | private bool HasFixedScaleParameter {
|
---|
48 | get { return ScaleParameter.Value != null; }
|
---|
49 | }
|
---|
50 | private bool HasFixedInverseLengthParameter {
|
---|
51 | get { return InverseLengthParameter.Value != null; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | [StorableConstructor]
|
---|
55 | private CovarianceMaternIso(StorableConstructorFlag _) : base(_) {
|
---|
56 | }
|
---|
57 |
|
---|
58 | private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner)
|
---|
59 | : base(original, cloner) {
|
---|
60 | }
|
---|
61 |
|
---|
62 | public CovarianceMaternIso()
|
---|
63 | : base() {
|
---|
64 | Name = ItemName;
|
---|
65 | Description = ItemDescription;
|
---|
66 |
|
---|
67 | Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric Matern covariance function."));
|
---|
68 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the isometric Matern covariance function."));
|
---|
69 | var validDValues = new ItemSet<IntValue>();
|
---|
70 | validDValues.Add((IntValue)new IntValue(1).AsReadOnly());
|
---|
71 | validDValues.Add((IntValue)new IntValue(3).AsReadOnly());
|
---|
72 | validDValues.Add((IntValue)new IntValue(5).AsReadOnly());
|
---|
73 | Parameters.Add(new ConstrainedValueParameter<IntValue>("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First()));
|
---|
74 | }
|
---|
75 |
|
---|
76 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
77 | return new CovarianceMaternIso(this, cloner);
|
---|
78 | }
|
---|
79 |
|
---|
80 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
81 | return
|
---|
82 | (HasFixedInverseLengthParameter ? 0 : 1) +
|
---|
83 | (HasFixedScaleParameter ? 0 : 1);
|
---|
84 | }
|
---|
85 |
|
---|
86 | public void SetParameter(double[] p) {
|
---|
87 | double inverseLength, scale;
|
---|
88 | GetParameterValues(p, out scale, out inverseLength);
|
---|
89 | InverseLengthParameter.Value = new DoubleValue(inverseLength);
|
---|
90 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
91 | }
|
---|
92 |
|
---|
93 | private void GetParameterValues(double[] p, out double scale, out double inverseLength) {
|
---|
94 | // gather parameter values
|
---|
95 | int c = 0;
|
---|
96 | if (HasFixedInverseLengthParameter) {
|
---|
97 | inverseLength = InverseLengthParameter.Value.Value;
|
---|
98 | } else {
|
---|
99 | inverseLength = 1.0 / Math.Exp(p[c]);
|
---|
100 | c++;
|
---|
101 | }
|
---|
102 |
|
---|
103 | if (HasFixedScaleParameter) {
|
---|
104 | scale = ScaleParameter.Value.Value;
|
---|
105 | } else {
|
---|
106 | scale = Math.Exp(2 * p[c]);
|
---|
107 | c++;
|
---|
108 | }
|
---|
109 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "p");
|
---|
110 | }
|
---|
111 |
|
---|
112 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
113 | double inverseLength, scale;
|
---|
114 | int d = DParameter.Value.Value;
|
---|
115 | GetParameterValues(p, out scale, out inverseLength);
|
---|
116 | var fixedInverseLength = HasFixedInverseLengthParameter;
|
---|
117 | var fixedScale = HasFixedScaleParameter;
|
---|
118 | // create functions
|
---|
119 | var cov = new ParameterizedCovarianceFunction();
|
---|
120 | cov.Covariance = (x, i, j) => {
|
---|
121 | double dist = i == j
|
---|
122 | ? 0.0
|
---|
123 | : Math.Sqrt(Util.SqrDist(x, i, j, columnIndices, Math.Sqrt(d) * inverseLength));
|
---|
124 | return scale * m(d, dist);
|
---|
125 | };
|
---|
126 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
127 | double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, columnIndices, Math.Sqrt(d) * inverseLength));
|
---|
128 | return scale * m(d, dist);
|
---|
129 | };
|
---|
130 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, d, scale, inverseLength, columnIndices, fixedInverseLength, fixedScale);
|
---|
131 | return cov;
|
---|
132 | }
|
---|
133 |
|
---|
134 | private static double m(int d, double t) {
|
---|
135 | double f;
|
---|
136 | switch (d) {
|
---|
137 | case 1: { f = 1; break; }
|
---|
138 | case 3: { f = 1 + t; break; }
|
---|
139 | case 5: { f = 1 + t * (1 + t / 3.0); break; }
|
---|
140 | default: throw new InvalidOperationException();
|
---|
141 | }
|
---|
142 | return f * Math.Exp(-t);
|
---|
143 | }
|
---|
144 |
|
---|
145 | private static double dm(int d, double t) {
|
---|
146 | double df;
|
---|
147 | switch (d) {
|
---|
148 | case 1: { df = 1; break; }
|
---|
149 | case 3: { df = t; break; }
|
---|
150 | case 5: { df = t * (1 + t) / 3.0; break; }
|
---|
151 | default: throw new InvalidOperationException();
|
---|
152 | }
|
---|
153 | return df * t * Math.Exp(-t);
|
---|
154 | }
|
---|
155 |
|
---|
156 | private static IList<double> GetGradient(double[,] x, int i, int j, int d, double scale, double inverseLength, int[] columnIndices,
|
---|
157 | bool fixedInverseLength, bool fixedScale) {
|
---|
158 | double dist = i == j
|
---|
159 | ? 0.0
|
---|
160 | : Math.Sqrt(Util.SqrDist(x, i, j, columnIndices, Math.Sqrt(d) * inverseLength));
|
---|
161 |
|
---|
162 | var g = new List<double>(2);
|
---|
163 | if (!fixedInverseLength) g.Add(scale * dm(d, dist));
|
---|
164 | if (!fixedScale) g.Add(2 * scale * m(d, dist));
|
---|
165 | return g;
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|