Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceConst.cs @ 11128

Last change on this file since 11128 was 10530, checked in by gkronber, 11 years ago

#2125: merged r10489:10491 and r10493 from trunk into stable

File size: 3.7 KB
RevLine 
[8464]1#region License Information
2/* HeuristicLab
[9456]3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[8464]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
[8484]23using System.Collections.Generic;
[10530]24using System.Linq;
[8464]25using HeuristicLab.Common;
26using HeuristicLab.Core;
[8582]27using HeuristicLab.Data;
[8982]28using HeuristicLab.Parameters;
[8464]29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Algorithms.DataAnalysis {
32  [StorableClass]
33  [Item(Name = "CovarianceConst",
34    Description = "Constant covariance function for Gaussian processes.")]
[8612]35  public sealed class CovarianceConst : ParameterizedNamedItem, ICovarianceFunction {
[8582]36    public IValueParameter<DoubleValue> ScaleParameter {
[8982]37      get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
[8582]38    }
[10530]39    private bool HasFixedScaleParameter {
40      get { return ScaleParameter.Value != null; }
41    }
[8464]42    [StorableConstructor]
[8612]43    private CovarianceConst(bool deserializing)
[8464]44      : base(deserializing) {
45    }
46
[8612]47    private CovarianceConst(CovarianceConst original, Cloner cloner)
[8464]48      : base(original, cloner) {
49    }
50
51    public CovarianceConst()
52      : base() {
[8612]53      Name = ItemName;
54      Description = ItemDescription;
55
[8982]56      Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale of the constant covariance function."));
[8464]57    }
58
59    public override IDeepCloneable Clone(Cloner cloner) {
60      return new CovarianceConst(this, cloner);
61    }
62
[8612]63    public int GetNumberOfParameters(int numberOfVariables) {
[10530]64      return HasFixedScaleParameter ? 0 : 1;
[8464]65    }
66
[8982]67    public void SetParameter(double[] p) {
68      double scale;
69      GetParameterValues(p, out scale);
70      ScaleParameter.Value = new DoubleValue(scale);
71    }
72
73    private void GetParameterValues(double[] p, out double scale) {
74      int c = 0;
75      // gather parameter values
[10530]76      if (HasFixedScaleParameter) {
[8982]77        scale = ScaleParameter.Value.Value;
[8582]78      } else {
[8982]79        scale = Math.Exp(2 * p[c]);
80        c++;
[8582]81      }
[8982]82      if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceConst", "p");
[8464]83    }
84
[8982]85    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
86      double scale;
87      GetParameterValues(p, out scale);
88      // create functions
89      var cov = new ParameterizedCovarianceFunction();
90      cov.Covariance = (x, i, j) => scale;
91      cov.CrossCovariance = (x, xt, i, j) => scale;
[10530]92      if (HasFixedScaleParameter) {
93        cov.CovarianceGradient = (x, i, j) => Enumerable.Empty<double>();
94      } else {
95        cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, scale, columnIndices);
96      }
[8982]97      return cov;
[8464]98    }
99
[8982]100    private static IEnumerable<double> GetGradient(double[,] x, int i, int j, double scale, IEnumerable<int> columnIndices) {
[8582]101      yield return 2.0 * scale;
[8464]102    }
103  }
104}
Note: See TracBrowser for help on using the repository browser.