1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Optimization;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | /// 0R classification algorithm.
|
---|
32 | /// </summary>
|
---|
33 | [Item("ZeroR Classification", "The simplest possible classifier, ZeroR always predicts the majority class.")]
|
---|
34 | [StorableClass]
|
---|
35 | public sealed class ZeroR : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
36 |
|
---|
37 | [StorableConstructor]
|
---|
38 | private ZeroR(bool deserializing) : base(deserializing) { }
|
---|
39 | private ZeroR(ZeroR original, Cloner cloner)
|
---|
40 | : base(original, cloner) {
|
---|
41 | }
|
---|
42 | public ZeroR()
|
---|
43 | : base() {
|
---|
44 | Problem = new ClassificationProblem();
|
---|
45 | }
|
---|
46 |
|
---|
47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
48 | return new ZeroR(this, cloner);
|
---|
49 | }
|
---|
50 |
|
---|
51 | protected override void Run() {
|
---|
52 | var solution = CreateZeroRSolution(Problem.ProblemData);
|
---|
53 | Results.Add(new Result("ZeroR solution", "The simplest possible classifier, ZeroR always predicts the majority class.", solution));
|
---|
54 | }
|
---|
55 |
|
---|
56 | public static IClassificationSolution CreateZeroRSolution(IClassificationProblemData problemData) {
|
---|
57 | var dataset = problemData.Dataset;
|
---|
58 | string target = problemData.TargetVariable;
|
---|
59 | var targetValues = dataset.GetDoubleValues(target, problemData.TrainingIndices);
|
---|
60 |
|
---|
61 |
|
---|
62 | // if multiple classes have the same number of observations then simply take the first one
|
---|
63 | var dominantClass = targetValues.GroupBy(x => x).ToDictionary(g => g.Key, g => g.Count())
|
---|
64 | .MaxItems(kvp => kvp.Value).Select(x => x.Key).First();
|
---|
65 |
|
---|
66 | var model = new ConstantModel(dominantClass, target);
|
---|
67 | var solution = model.CreateClassificationSolution(problemData);
|
---|
68 | return solution;
|
---|
69 | }
|
---|
70 | }
|
---|
71 | }
|
---|