1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.MainForm;
|
---|
24 | using HeuristicLab.Problems.DataAnalysis;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Views;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis.Views {
|
---|
31 | [View("RF Model Evaluation")]
|
---|
32 | [Content(typeof(IRandomForestRegressionSolution), false)]
|
---|
33 | [Content(typeof(IRandomForestClassificationSolution), false)]
|
---|
34 | public partial class RandomForestModelEvaluationView : DataAnalysisSolutionEvaluationView {
|
---|
35 |
|
---|
36 | protected override void SetEnabledStateOfControls() {
|
---|
37 | base.SetEnabledStateOfControls();
|
---|
38 | listBox.Enabled = Content != null;
|
---|
39 | viewHost.Enabled = Content != null;
|
---|
40 | }
|
---|
41 |
|
---|
42 | public RandomForestModelEvaluationView()
|
---|
43 | : base() {
|
---|
44 | InitializeComponent();
|
---|
45 | }
|
---|
46 |
|
---|
47 | protected override void OnContentChanged() {
|
---|
48 | base.OnContentChanged();
|
---|
49 | if (Content == null) {
|
---|
50 | viewHost.Content = null;
|
---|
51 | listBox.Items.Clear();
|
---|
52 | } else {
|
---|
53 | viewHost.Content = null;
|
---|
54 | listBox.Items.Clear();
|
---|
55 | var classSol = Content as IRandomForestClassificationSolution;
|
---|
56 | var regSol = Content as IRandomForestRegressionSolution;
|
---|
57 | var numTrees = classSol != null ? classSol.NumberOfTrees : regSol != null ? regSol.NumberOfTrees : 0;
|
---|
58 | for (int i = 0; i < numTrees; i++) {
|
---|
59 | listBox.Items.Add(i + 1);
|
---|
60 | }
|
---|
61 | }
|
---|
62 | }
|
---|
63 |
|
---|
64 | private void listBox_SelectedIndexChanged(object sender, System.EventArgs e) {
|
---|
65 | if (listBox.SelectedItem == null) viewHost.Content = null;
|
---|
66 | else {
|
---|
67 | var idx = (int)listBox.SelectedItem;
|
---|
68 | viewHost.Content = CreateModel(idx);
|
---|
69 | }
|
---|
70 | }
|
---|
71 |
|
---|
72 | private void listBox_DoubleClick(object sender, System.EventArgs e) {
|
---|
73 | var selectedItem = listBox.SelectedItem;
|
---|
74 | if (selectedItem == null) return;
|
---|
75 | var idx = (int)listBox.SelectedItem;
|
---|
76 | MainFormManager.MainForm.ShowContent(CreateModel(idx));
|
---|
77 | }
|
---|
78 |
|
---|
79 | private IContent CreateModel(int idx) {
|
---|
80 | idx -= 1;
|
---|
81 | var rfModel = Content.Model as RandomForestModel;
|
---|
82 | if (rfModel == null) return null;
|
---|
83 | var regProblemData = Content.ProblemData as IRegressionProblemData;
|
---|
84 | var classProblemData = Content.ProblemData as IClassificationProblemData;
|
---|
85 | if (idx < 0 || idx >= rfModel.NumberOfTrees)
|
---|
86 | return null;
|
---|
87 | if (regProblemData != null) {
|
---|
88 | var syModel = new SymbolicRegressionModel(regProblemData.TargetVariable, rfModel.ExtractTree(idx),
|
---|
89 | new SymbolicDataAnalysisExpressionTreeLinearInterpreter());
|
---|
90 | return syModel.CreateRegressionSolution(regProblemData);
|
---|
91 | } else if (classProblemData != null) {
|
---|
92 | var syModel = new SymbolicDiscriminantFunctionClassificationModel(classProblemData.TargetVariable, rfModel.ExtractTree(idx),
|
---|
93 | new SymbolicDataAnalysisExpressionTreeLinearInterpreter(), new NormalDistributionCutPointsThresholdCalculator());
|
---|
94 | syModel.RecalculateModelParameters(classProblemData, classProblemData.TrainingIndices);
|
---|
95 | return syModel.CreateClassificationSolution(classProblemData);
|
---|
96 | } else throw new InvalidProgramException();
|
---|
97 | }
|
---|
98 | }
|
---|
99 | }
|
---|