1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableType("A6293516-C146-469D-B248-31B866A1D94F")]
|
---|
31 | public sealed class RegressionTreeParameters : Item {
|
---|
32 | [Storable]
|
---|
33 | private readonly ISplitter splitter;
|
---|
34 | [Storable]
|
---|
35 | private readonly IPruning pruning;
|
---|
36 | [Storable]
|
---|
37 | private readonly ILeafModel leafModel;
|
---|
38 | [Storable]
|
---|
39 | private readonly int minLeafSize;
|
---|
40 | [Storable]
|
---|
41 | private readonly IRegressionProblemData problemData;
|
---|
42 | [Storable]
|
---|
43 | private readonly IRandom random;
|
---|
44 |
|
---|
45 | public ISplitter Splitter {
|
---|
46 | get { return splitter; }
|
---|
47 | }
|
---|
48 | public IPruning Pruning {
|
---|
49 | get { return pruning; }
|
---|
50 | }
|
---|
51 | public ILeafModel LeafModel {
|
---|
52 | get { return leafModel; }
|
---|
53 | }
|
---|
54 | public int MinLeafSize {
|
---|
55 | get { return minLeafSize; }
|
---|
56 | }
|
---|
57 | private IRegressionProblemData ProblemData {
|
---|
58 | get { return problemData; }
|
---|
59 | }
|
---|
60 | public IRandom Random {
|
---|
61 | get { return random; }
|
---|
62 | }
|
---|
63 | public IEnumerable<string> AllowedInputVariables {
|
---|
64 | get { return ProblemData.AllowedInputVariables; }
|
---|
65 | }
|
---|
66 | public string TargetVariable {
|
---|
67 | get { return ProblemData.TargetVariable; }
|
---|
68 | }
|
---|
69 | public IDataset Data {
|
---|
70 | get { return ProblemData.Dataset; }
|
---|
71 | }
|
---|
72 |
|
---|
73 | #region Constructors & Cloning
|
---|
74 | [StorableConstructor]
|
---|
75 | private RegressionTreeParameters(StorableConstructorFlag _) : base(_) { }
|
---|
76 | private RegressionTreeParameters(RegressionTreeParameters original, Cloner cloner) : base(original, cloner) {
|
---|
77 | problemData = cloner.Clone(original.problemData);
|
---|
78 | random = cloner.Clone(original.random);
|
---|
79 | leafModel = cloner.Clone(original.leafModel);
|
---|
80 | splitter = cloner.Clone(original.splitter);
|
---|
81 | pruning = cloner.Clone(original.pruning);
|
---|
82 | minLeafSize = original.minLeafSize;
|
---|
83 | }
|
---|
84 |
|
---|
85 | public RegressionTreeParameters(IPruning pruning, int minleafSize, ILeafModel leafModel,
|
---|
86 | IRegressionProblemData problemData, IRandom random, ISplitter splitter) {
|
---|
87 | this.problemData = problemData;
|
---|
88 | this.random = random;
|
---|
89 | this.leafModel = leafModel;
|
---|
90 | this.splitter = splitter;
|
---|
91 | this.pruning = pruning;
|
---|
92 | minLeafSize = Math.Max(pruning.MinLeafSize(problemData, leafModel), Math.Max(minleafSize, leafModel.MinLeafSize(problemData)));
|
---|
93 | }
|
---|
94 | public RegressionTreeParameters(ILeafModel modeltype, IRegressionProblemData problemData, IRandom random) {
|
---|
95 | this.problemData = problemData;
|
---|
96 | this.random = random;
|
---|
97 | leafModel = modeltype;
|
---|
98 | }
|
---|
99 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
100 | return new RegressionTreeParameters(this, cloner);
|
---|
101 | }
|
---|
102 | #endregion
|
---|
103 | }
|
---|
104 | } |
---|