[15470] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15470] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[16847] | 27 | using HEAL.Attic;
|
---|
[15470] | 28 |
|
---|
| 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16847] | 30 | [StorableType("A2DDC528-BAA7-445F-98E1-5F895CE2FD5C")]
|
---|
[15470] | 31 | public class PrincipleComponentTransformation : IDeepCloneable {
|
---|
| 32 | #region Properties
|
---|
| 33 | [Storable]
|
---|
| 34 | private double[,] Matrix { get; set; }
|
---|
| 35 | [Storable]
|
---|
| 36 | public double[] Variances { get; private set; }
|
---|
| 37 | [Storable]
|
---|
| 38 | public string[] VariableNames { get; private set; }
|
---|
| 39 | [Storable]
|
---|
| 40 | private double[] Deviations { get; set; }
|
---|
| 41 | [Storable]
|
---|
| 42 | private double[] Means { get; set; }
|
---|
| 43 | public string[] ComponentNames {
|
---|
| 44 | get { return VariableNames.Select((_, x) => "pc" + x).ToArray(); }
|
---|
| 45 | }
|
---|
| 46 | #endregion
|
---|
| 47 |
|
---|
| 48 | #region HLConstructors
|
---|
| 49 | [StorableConstructor]
|
---|
[16847] | 50 | protected PrincipleComponentTransformation(StorableConstructorFlag _) { }
|
---|
[15470] | 51 | protected PrincipleComponentTransformation(PrincipleComponentTransformation original, Cloner cloner) {
|
---|
| 52 | if (original.Variances != null) Variances = original.Variances.ToArray();
|
---|
| 53 | if (original.VariableNames != null) VariableNames = original.VariableNames.ToArray();
|
---|
| 54 | if (original.Deviations != null) Deviations = original.Deviations.ToArray();
|
---|
| 55 | if (original.Means != null) Means = original.Means.ToArray();
|
---|
| 56 | if (original.Matrix == null) return;
|
---|
| 57 | Matrix = new double[original.Matrix.GetLength(0), original.Matrix.GetLength(1)];
|
---|
| 58 | for (var i = 0; i < original.Matrix.GetLength(0); i++)
|
---|
| 59 | for (var j = 0; j < original.Matrix.GetLength(1); j++)
|
---|
| 60 | Matrix[i, j] = original.Matrix[i, j];
|
---|
| 61 | }
|
---|
| 62 | private PrincipleComponentTransformation() { }
|
---|
| 63 | public IDeepCloneable Clone(Cloner cloner) {
|
---|
| 64 | return new PrincipleComponentTransformation(this, cloner);
|
---|
| 65 | }
|
---|
| 66 | public object Clone() {
|
---|
| 67 | return new Cloner().Clone(this);
|
---|
| 68 | }
|
---|
| 69 | #endregion
|
---|
| 70 |
|
---|
| 71 | #region Static Interface
|
---|
| 72 | public static PrincipleComponentTransformation CreateProjection(IDataset dataset, IEnumerable<int> rows, IEnumerable<string> variables, bool normalize = false) {
|
---|
| 73 | var res = new PrincipleComponentTransformation();
|
---|
| 74 | res.BuildPca(dataset, rows, variables, normalize);
|
---|
| 75 | return res;
|
---|
| 76 | }
|
---|
| 77 | #endregion
|
---|
| 78 |
|
---|
| 79 | #region Projection
|
---|
| 80 | public IRegressionProblemData TransformProblemData(IRegressionProblemData pd) {
|
---|
| 81 | return CreateProblemData(pd, TransformDataset(pd.Dataset), ComponentNames);
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public IDataset TransformDataset(IDataset data) {
|
---|
| 85 | return CreateDataset(data, TransformData(data, Enumerable.Range(0, data.Rows)));
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public double[,] TransformData(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 89 | var instances = rows.ToArray();
|
---|
| 90 | var result = new double[instances.Length, VariableNames.Length];
|
---|
| 91 | for (var r = 0; r < instances.Length; r++)
|
---|
| 92 | for (var i = 0; i < VariableNames.Length; i++) {
|
---|
| 93 | var val = (dataset.GetDoubleValue(VariableNames[i], instances[r]) - Means[i]) / Deviations[i];
|
---|
| 94 | for (var j = 0; j < VariableNames.Length; j++)
|
---|
| 95 | result[r, j] += val * Matrix[i, j];
|
---|
| 96 | }
|
---|
| 97 | return result;
|
---|
| 98 | }
|
---|
| 99 | #endregion
|
---|
| 100 |
|
---|
| 101 | #region Reversion
|
---|
| 102 | public IRegressionProblemData RevertProblemData(IRegressionProblemData pd) {
|
---|
| 103 | return CreateProblemData(pd, RevertDataset(pd.Dataset), VariableNames);
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | public IDataset RevertDataset(IDataset data) {
|
---|
| 107 | return CreateRevertedDataset(data, RevertData(data, Enumerable.Range(0, data.Rows)));
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | public double[,] RevertData(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 111 | var instances = rows.ToArray();
|
---|
| 112 | var components = ComponentNames;
|
---|
| 113 | var result = new double[instances.Length, VariableNames.Length];
|
---|
| 114 | for (var r = 0; r < instances.Length; r++)
|
---|
| 115 | for (var i = 0; i < components.Length; i++) {
|
---|
| 116 | var val = dataset.GetDoubleValue(components[i], instances[r]);
|
---|
| 117 | for (var j = 0; j < VariableNames.Length; j++)
|
---|
| 118 | result[r, j] += val * Matrix[j, i];
|
---|
| 119 | }
|
---|
| 120 | for (var r = 0; r < instances.Length; r++) {
|
---|
| 121 | for (var j = 0; j < VariableNames.Length; j++) {
|
---|
| 122 | result[r, j] *= Deviations[j];
|
---|
| 123 | result[r, j] += Means[j];
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | return result;
|
---|
| 128 | }
|
---|
| 129 | #endregion
|
---|
| 130 |
|
---|
| 131 | #region Helpers
|
---|
| 132 | private static IRegressionProblemData CreateProblemData(IRegressionProblemData pd, IDataset data, IReadOnlyList<string> allowedNames) {
|
---|
| 133 | var res = new RegressionProblemData(data, allowedNames, pd.TargetVariable);
|
---|
| 134 | res.TestPartition.Start = pd.TestPartition.Start;
|
---|
| 135 | res.TestPartition.End = pd.TestPartition.End;
|
---|
| 136 | res.TrainingPartition.Start = pd.TrainingPartition.Start;
|
---|
| 137 | res.TrainingPartition.End = pd.TrainingPartition.End;
|
---|
| 138 | res.Name = pd.Name;
|
---|
| 139 | return res;
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | private IDataset CreateDataset(IDataset data, double[,] pcs) {
|
---|
| 143 | var n = ComponentNames;
|
---|
| 144 | var nDouble = data.DoubleVariables.Where(x => !VariableNames.Contains(x)).ToArray();
|
---|
| 145 | var nDateTime = data.DateTimeVariables.ToArray();
|
---|
| 146 | var nString = data.StringVariables.ToArray();
|
---|
| 147 |
|
---|
| 148 | IEnumerable<IList> nData = n.Select((_, x) => Enumerable.Range(0, pcs.GetLength(0)).Select(r => pcs[r, x]).ToList());
|
---|
| 149 | IEnumerable<IList> nDoubleData = nDouble.Select(x => data.GetDoubleValues(x).ToList());
|
---|
| 150 | IEnumerable<IList> nDateTimeData = nDateTime.Select(x => data.GetDateTimeValues(x).ToList());
|
---|
| 151 | IEnumerable<IList> nStringData = nString.Select(x => data.GetStringValues(x).ToList());
|
---|
| 152 |
|
---|
| 153 | return new Dataset(n.Concat(nDouble).Concat(nDateTime).Concat(nString), nData.Concat(nDoubleData).Concat(nDateTimeData).Concat(nStringData).ToArray());
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | private IDataset CreateRevertedDataset(IDataset data, double[,] pcs) {
|
---|
| 157 | var n = VariableNames;
|
---|
| 158 | var nDouble = data.DoubleVariables.Where(x => !ComponentNames.Contains(x)).ToArray();
|
---|
| 159 | var nDateTime = data.DateTimeVariables.ToArray();
|
---|
| 160 | var nString = data.StringVariables.ToArray();
|
---|
| 161 |
|
---|
| 162 | IEnumerable<IList> nData = n.Select((_, x) => Enumerable.Range(0, pcs.GetLength(0)).Select(r => pcs[r, x]).ToList());
|
---|
| 163 | IEnumerable<IList> nDoubleData = nDouble.Select(x => data.GetDoubleValues(x).ToList());
|
---|
| 164 | IEnumerable<IList> nDateTimeData = nDateTime.Select(x => data.GetDateTimeValues(x).ToList());
|
---|
| 165 | IEnumerable<IList> nStringData = nString.Select(x => data.GetStringValues(x).ToList());
|
---|
| 166 |
|
---|
| 167 | return new Dataset(n.Concat(nDouble).Concat(nDateTime).Concat(nString), nData.Concat(nDoubleData).Concat(nDateTimeData).Concat(nStringData).ToArray());
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | private void BuildPca(IDataset dataset, IEnumerable<int> rows, IEnumerable<string> variables, bool normalize) {
|
---|
| 171 | var instances = rows.ToArray();
|
---|
| 172 | var attributes = variables.ToArray();
|
---|
| 173 | Means = normalize
|
---|
| 174 | ? attributes.Select(v => dataset.GetDoubleValues(v, instances).Average()).ToArray()
|
---|
| 175 | : attributes.Select(x => 0.0).ToArray();
|
---|
| 176 | Deviations = normalize
|
---|
| 177 | ? attributes.Select(v => dataset.GetDoubleValues(v, instances).StandardDeviationPop()).Select(x => x.IsAlmost(0.0) ? 1 : x).ToArray()
|
---|
| 178 | : attributes.Select(x => 1.0).ToArray();
|
---|
| 179 |
|
---|
| 180 | var data = new double[instances.Length, attributes.Length];
|
---|
| 181 |
|
---|
| 182 | for (var j = 0; j < attributes.Length; j++) {
|
---|
| 183 | var i = 0;
|
---|
| 184 | foreach (var v in dataset.GetDoubleValues(attributes[j], instances)) {
|
---|
| 185 | data[i, j] = (v - Means[j]) / Deviations[j];
|
---|
| 186 | i++;
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | int info;
|
---|
| 191 | double[] variances;
|
---|
| 192 | double[,] matrix;
|
---|
| 193 | alglib.pcabuildbasis(data, instances.Length, attributes.Length, out info, out variances, out matrix);
|
---|
| 194 | Matrix = matrix;
|
---|
| 195 | Variances = variances;
|
---|
| 196 | VariableNames = attributes;
|
---|
| 197 | }
|
---|
| 198 | #endregion
|
---|
| 199 | }
|
---|
| 200 | } |
---|