[15830] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15830] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[16847] | 25 | using HeuristicLab.Common;
|
---|
[15830] | 26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[16847] | 27 | using HEAL.Attic;
|
---|
[15830] | 28 |
|
---|
| 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[16847] | 30 | [StorableType("C20C7DF1-CE33-4CCD-88D3-E145CFE239AC")]
|
---|
[15830] | 31 | public class RegressionNodeModel : RegressionModel {
|
---|
| 32 | #region Properties
|
---|
[17085] | 33 | [Storable]
|
---|
[15830] | 34 | public double PruningStrength = double.NaN;
|
---|
| 35 | private IReadOnlyList<string> Variables {
|
---|
| 36 | get {
|
---|
| 37 | if (IsLeaf && Model == null) return new List<string>();
|
---|
| 38 | if (IsLeaf) return Model.VariablesUsedForPrediction.ToList();
|
---|
| 39 | var set = new HashSet<string> {SplitAttribute};
|
---|
| 40 | var vl = Left.Variables;
|
---|
| 41 | var vr = Right.Variables;
|
---|
| 42 | for (var i = 0; i < vl.Count; i++) set.Add(vl[i]);
|
---|
| 43 | for (var i = 0; i < vr.Count; i++) set.Add(vr[i]);
|
---|
| 44 | return set.ToList();
|
---|
| 45 | }
|
---|
| 46 | }
|
---|
| 47 | [Storable]
|
---|
| 48 | internal int NumSamples { get; private set; }
|
---|
| 49 | [Storable]
|
---|
| 50 | internal bool IsLeaf { get; private set; }
|
---|
| 51 | [Storable]
|
---|
[16069] | 52 | private IRegressionModel Model { get; set; }
|
---|
[15830] | 53 |
|
---|
| 54 | [Storable]
|
---|
| 55 | public string SplitAttribute { get; private set; }
|
---|
| 56 | [Storable]
|
---|
| 57 | public double SplitValue { get; private set; }
|
---|
| 58 | [Storable]
|
---|
| 59 | public RegressionNodeModel Left { get; private set; }
|
---|
| 60 | [Storable]
|
---|
| 61 | public RegressionNodeModel Right { get; private set; }
|
---|
| 62 | [Storable]
|
---|
| 63 | public RegressionNodeModel Parent { get; private set; }
|
---|
| 64 | #endregion
|
---|
| 65 |
|
---|
| 66 | #region HLConstructors
|
---|
| 67 | [StorableConstructor]
|
---|
[16847] | 68 | protected RegressionNodeModel(StorableConstructorFlag _) : base(_) { }
|
---|
[15830] | 69 | protected RegressionNodeModel(RegressionNodeModel original, Cloner cloner) : base(original, cloner) {
|
---|
| 70 | IsLeaf = original.IsLeaf;
|
---|
| 71 | Model = cloner.Clone(original.Model);
|
---|
| 72 | SplitValue = original.SplitValue;
|
---|
| 73 | SplitAttribute = original.SplitAttribute;
|
---|
| 74 | Left = cloner.Clone(original.Left);
|
---|
| 75 | Right = cloner.Clone(original.Right);
|
---|
| 76 | Parent = cloner.Clone(original.Parent);
|
---|
| 77 | NumSamples = original.NumSamples;
|
---|
| 78 | }
|
---|
| 79 | private RegressionNodeModel(string targetAttr) : base(targetAttr) {
|
---|
| 80 | IsLeaf = true;
|
---|
| 81 | }
|
---|
| 82 | private RegressionNodeModel(RegressionNodeModel parent) : this(parent.TargetVariable) {
|
---|
| 83 | Parent = parent;
|
---|
| 84 | IsLeaf = true;
|
---|
| 85 | }
|
---|
| 86 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 87 | return new RegressionNodeModel(this, cloner);
|
---|
| 88 | }
|
---|
| 89 | public static RegressionNodeModel CreateNode(string targetAttr, RegressionTreeParameters regressionTreeParams) {
|
---|
| 90 | return regressionTreeParams.LeafModel.ProvidesConfidence ? new ConfidenceRegressionNodeModel(targetAttr) : new RegressionNodeModel(targetAttr);
|
---|
| 91 | }
|
---|
| 92 | private static RegressionNodeModel CreateNode(RegressionNodeModel parent, RegressionTreeParameters regressionTreeParams) {
|
---|
| 93 | return regressionTreeParams.LeafModel.ProvidesConfidence ? new ConfidenceRegressionNodeModel(parent) : new RegressionNodeModel(parent);
|
---|
| 94 | }
|
---|
| 95 | #endregion
|
---|
| 96 |
|
---|
| 97 | #region RegressionModel
|
---|
| 98 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 99 | get { return Variables; }
|
---|
| 100 | }
|
---|
| 101 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 102 | if (!IsLeaf) return rows.Select(row => GetEstimatedValue(dataset, row));
|
---|
| 103 | if (Model == null) throw new NotSupportedException("The model has not been built correctly");
|
---|
| 104 | return Model.GetEstimatedValues(dataset, rows);
|
---|
| 105 | }
|
---|
| 106 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 107 | return new RegressionSolution(this, problemData);
|
---|
| 108 | }
|
---|
| 109 | #endregion
|
---|
| 110 |
|
---|
| 111 | internal void Split(RegressionTreeParameters regressionTreeParams, string splitAttribute, double splitValue, int numSamples) {
|
---|
| 112 | NumSamples = numSamples;
|
---|
| 113 | SplitAttribute = splitAttribute;
|
---|
| 114 | SplitValue = splitValue;
|
---|
| 115 | Left = CreateNode(this, regressionTreeParams);
|
---|
| 116 | Right = CreateNode(this, regressionTreeParams);
|
---|
| 117 | IsLeaf = false;
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | internal void ToLeaf() {
|
---|
| 121 | IsLeaf = true;
|
---|
| 122 | Right = null;
|
---|
| 123 | Left = null;
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | internal void SetLeafModel(IRegressionModel model) {
|
---|
| 127 | Model = model;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | internal IEnumerable<RegressionNodeModel> EnumerateNodes() {
|
---|
| 131 | var queue = new Queue<RegressionNodeModel>();
|
---|
| 132 | queue.Enqueue(this);
|
---|
| 133 | while (queue.Count != 0) {
|
---|
| 134 | var cur = queue.Dequeue();
|
---|
| 135 | yield return cur;
|
---|
| 136 | if (cur.Left == null && cur.Right == null) continue;
|
---|
| 137 | if (cur.Left != null) queue.Enqueue(cur.Left);
|
---|
| 138 | if (cur.Right != null) queue.Enqueue(cur.Right);
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | #region Helpers
|
---|
| 143 | private double GetEstimatedValue(IDataset dataset, int row) {
|
---|
| 144 | if (!IsLeaf) return (dataset.GetDoubleValue(SplitAttribute, row) <= SplitValue ? Left : Right).GetEstimatedValue(dataset, row);
|
---|
| 145 | if (Model == null) throw new NotSupportedException("The model has not been built correctly");
|
---|
| 146 | return Model.GetEstimatedValues(dataset, new[] {row}).First();
|
---|
| 147 | }
|
---|
| 148 | #endregion
|
---|
| 149 |
|
---|
[16847] | 150 | [StorableType("1FF9E216-6AF1-4282-A7EF-3FA0C1DB29C8")]
|
---|
[15830] | 151 | private sealed class ConfidenceRegressionNodeModel : RegressionNodeModel, IConfidenceRegressionModel {
|
---|
| 152 | #region HLConstructors
|
---|
| 153 | [StorableConstructor]
|
---|
[16847] | 154 | private ConfidenceRegressionNodeModel(StorableConstructorFlag _) : base(_) { }
|
---|
[15830] | 155 | private ConfidenceRegressionNodeModel(ConfidenceRegressionNodeModel original, Cloner cloner) : base(original, cloner) { }
|
---|
| 156 | public ConfidenceRegressionNodeModel(string targetAttr) : base(targetAttr) { }
|
---|
| 157 | public ConfidenceRegressionNodeModel(RegressionNodeModel parent) : base(parent) { }
|
---|
| 158 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 159 | return new ConfidenceRegressionNodeModel(this, cloner);
|
---|
| 160 | }
|
---|
| 161 | #endregion
|
---|
| 162 |
|
---|
| 163 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 164 | return IsLeaf ? ((IConfidenceRegressionModel)Model).GetEstimatedVariances(dataset, rows) : rows.Select(row => GetEstimatedVariance(dataset, row));
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | private double GetEstimatedVariance(IDataset dataset, int row) {
|
---|
[16069] | 168 | return !IsLeaf ? ((IConfidenceRegressionModel)(dataset.GetDoubleValue(SplitAttribute, row) <= SplitValue ? Left : Right)).GetEstimatedVariances(dataset, row.ToEnumerable()).Single() : ((IConfidenceRegressionModel)Model).GetEstimatedVariances(dataset, new[] {row}).First();
|
---|
[15830] | 169 | }
|
---|
| 170 |
|
---|
| 171 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 172 | return new ConfidenceRegressionSolution(this, problemData);
|
---|
| 173 | }
|
---|
| 174 | }
|
---|
| 175 | }
|
---|
| 176 | } |
---|