[9129] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9129] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
| 25 | using HeuristicLab.Operators;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
[17097] | 28 | using HEAL.Attic;
|
---|
[9129] | 29 | using System;
|
---|
| 30 | using System.Collections.Generic;
|
---|
| 31 | using System.Linq;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
| 34 | [Item("CMAInitializer", "Initializes the covariance matrix and step size variables.")]
|
---|
[17097] | 35 | [StorableType("AEE40FF4-A610-474B-B969-032A54D814CE")]
|
---|
[9129] | 36 | public class CMAInitializer : SingleSuccessorOperator, ICMAInitializer, IIterationBasedOperator {
|
---|
| 37 |
|
---|
| 38 | public Type CMAType {
|
---|
| 39 | get { return typeof(CMAParameters); }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | #region Parameter Properties
|
---|
| 43 | public IValueLookupParameter<IntValue> DimensionParameter {
|
---|
| 44 | get { return (IValueLookupParameter<IntValue>)Parameters["Dimension"]; }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public IValueLookupParameter<DoubleArray> InitialSigmaParameter {
|
---|
| 48 | get { return (IValueLookupParameter<DoubleArray>)Parameters["InitialSigma"]; }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public IValueLookupParameter<DoubleMatrix> SigmaBoundsParameter {
|
---|
| 52 | get { return (IValueLookupParameter<DoubleMatrix>)Parameters["SigmaBounds"]; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public ILookupParameter<IntValue> IterationsParameter {
|
---|
| 56 | get { return (ILookupParameter<IntValue>)Parameters["Iterations"]; }
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
| 60 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public IValueLookupParameter<IntValue> InitialIterationsParameter {
|
---|
| 64 | get { return (IValueLookupParameter<IntValue>)Parameters["InitialIterations"]; }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public ILookupParameter<IntValue> PopulationSizeParameter {
|
---|
| 68 | get { return (ILookupParameter<IntValue>)Parameters["PopulationSize"]; }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public ILookupParameter<IntValue> MuParameter {
|
---|
| 72 | get { return (ILookupParameter<IntValue>)Parameters["Mu"]; }
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
| 76 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
| 77 | }
|
---|
| 78 | #endregion
|
---|
| 79 |
|
---|
| 80 | [StorableConstructor]
|
---|
[17097] | 81 | protected CMAInitializer(StorableConstructorFlag _) : base(_) { }
|
---|
[9129] | 82 | protected CMAInitializer(CMAInitializer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 83 | public CMAInitializer()
|
---|
| 84 | : base() {
|
---|
| 85 | Parameters.Add(new ValueLookupParameter<IntValue>("Dimension", "The problem dimension (N)."));
|
---|
| 86 | Parameters.Add(new ValueLookupParameter<DoubleArray>("InitialSigma", "The initial value for Sigma (need to be > 0), can be single dimensioned or an array that should be equal to the size of the vector."));
|
---|
| 87 | Parameters.Add(new ValueLookupParameter<DoubleMatrix>("SigmaBounds", "The bounds for sigma value can be omitted, given as one value for all dimensions or a value for each dimension. First column specifies minimum, second column maximum value."));
|
---|
| 88 | Parameters.Add(new LookupParameter<IntValue>("Iterations", "The current iteration that is being processed."));
|
---|
| 89 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations to be processed."));
|
---|
| 90 | Parameters.Add(new ValueLookupParameter<IntValue>("InitialIterations", "The number of iterations that should be performed using the diagonal covariance matrix only.", new IntValue(0)));
|
---|
| 91 | Parameters.Add(new LookupParameter<IntValue>("PopulationSize", "The population size (lambda)."));
|
---|
| 92 | Parameters.Add(new LookupParameter<IntValue>("Mu", "Optional, the number of offspring considered for updating of the strategy parameters."));
|
---|
| 93 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The strategy parameters for real-encoded CMA-ES."));
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 97 | return new CMAInitializer(this, cloner);
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | public override IOperation Apply() {
|
---|
| 101 | var N = DimensionParameter.ActualValue.Value;
|
---|
| 102 | var lambda = PopulationSizeParameter.ActualValue.Value;
|
---|
| 103 | var mu = MuParameter.ActualValue;
|
---|
| 104 |
|
---|
| 105 | var sp = new CMAParameters();
|
---|
[9297] | 106 | sp.Mu = mu == null ? (int)Math.Floor(lambda / 2.0) : mu.Value;
|
---|
[9129] | 107 | sp.QualityHistorySize = 10 + 30 * N / lambda;
|
---|
| 108 | sp.QualityHistory = new Queue<double>(sp.QualityHistorySize + 1);
|
---|
| 109 |
|
---|
| 110 | var s = InitialSigmaParameter.ActualValue;
|
---|
| 111 | if (s == null || s.Length == 0) throw new InvalidOperationException("Initial standard deviation (sigma) must be given.");
|
---|
| 112 | var sigma = s.Max();
|
---|
| 113 | if (sigma <= 0) throw new InvalidOperationException("Initial standard deviation (sigma) must be > 0.");
|
---|
| 114 |
|
---|
| 115 | var pc = new double[N]; // evolution paths for C
|
---|
| 116 | var ps = new double[N]; // evolution paths for sigma
|
---|
| 117 | var B = new double[N, N]; // B defines the coordinate system
|
---|
| 118 | var D = new double[N]; // diagonal D defines the scaling
|
---|
| 119 | var C = new double[N, N]; // covariance matrix C
|
---|
| 120 | var BDz = new double[N];
|
---|
| 121 | double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue;
|
---|
| 122 | for (int i = 0; i < N; i++) {
|
---|
| 123 | B[i, i] = 1;
|
---|
| 124 | if (s.Length == 1) D[i] = 1;
|
---|
| 125 | else if (s.Length == N) D[i] = s[i] / sigma;
|
---|
| 126 | else throw new InvalidOperationException("Initial standard deviation (sigma) must either contain only one value for all dimension or for every dimension.");
|
---|
| 127 | if (D[i] <= 0) throw new InvalidOperationException("Initial standard deviation (sigma) values must all be > 0.");
|
---|
| 128 | C[i, i] = D[i] * D[i];
|
---|
| 129 | if (Math.Sqrt(C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(C[i, i]);
|
---|
| 130 | if (Math.Sqrt(C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(C[i, i]);
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | // ensure maximal and minimal standard deviations
|
---|
| 134 | var sigmaBounds = SigmaBoundsParameter.ActualValue;
|
---|
| 135 | if (sigmaBounds != null && sigmaBounds.Rows > 0) {
|
---|
| 136 | for (int i = 0; i < N; i++) {
|
---|
| 137 | var d = sigmaBounds[Math.Min(i, sigmaBounds.Rows - 1), 0];
|
---|
| 138 | if (d > sigma * minSqrtdiagC) sigma = d / minSqrtdiagC;
|
---|
| 139 | }
|
---|
| 140 | for (int i = 0; i < N; i++) {
|
---|
| 141 | var d = sigmaBounds[Math.Min(i, sigmaBounds.Rows - 1), 1];
|
---|
| 142 | if (d > sigma * maxSqrtdiagC) sigma = d / maxSqrtdiagC;
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 | // end ensure ...
|
---|
| 146 |
|
---|
| 147 | // testAndCorrectNumerics
|
---|
| 148 | double fac = 1;
|
---|
| 149 | if (D.Max() < 1e-6)
|
---|
| 150 | fac = 1.0 / D.Max();
|
---|
| 151 | else if (D.Min() > 1e4)
|
---|
| 152 | fac = 1.0 / D.Min();
|
---|
| 153 |
|
---|
| 154 | if (fac != 1.0) {
|
---|
| 155 | sigma /= fac;
|
---|
| 156 | for (int i = 0; i < N; i++) {
|
---|
| 157 | pc[i] *= fac;
|
---|
| 158 | D[i] *= fac;
|
---|
| 159 | for (int j = 0; j < N; j++)
|
---|
| 160 | C[i, j] *= fac * fac;
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | // end testAndCorrectNumerics
|
---|
| 164 |
|
---|
| 165 | var initialIterations = InitialIterationsParameter.ActualValue;
|
---|
| 166 | if (initialIterations == null) {
|
---|
| 167 | initialIterations = new IntValue(0);
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | double maxD = D.Max(), minD = D.Min();
|
---|
[9297] | 171 | if (minD == 0) sp.AxisRatio = double.PositiveInfinity;
|
---|
| 172 | else sp.AxisRatio = maxD / minD;
|
---|
| 173 | sp.PC = pc;
|
---|
| 174 | sp.PS = ps;
|
---|
| 175 | sp.B = B;
|
---|
| 176 | sp.D = D;
|
---|
| 177 | sp.C = C;
|
---|
| 178 | sp.BDz = BDz;
|
---|
| 179 | sp.Sigma = sigma;
|
---|
| 180 | if (sigmaBounds != null) {
|
---|
| 181 | sp.SigmaBounds = new double[sigmaBounds.Rows, sigmaBounds.Columns];
|
---|
| 182 | for (int i = 0; i < sigmaBounds.Rows; i++)
|
---|
| 183 | for (int j = 0; j < sigmaBounds.Columns; j++)
|
---|
| 184 | sp.SigmaBounds[i, j] = sigmaBounds[i, j];
|
---|
| 185 | }
|
---|
| 186 | sp.InitialIterations = initialIterations.Value;
|
---|
[9129] | 187 |
|
---|
| 188 | StrategyParametersParameter.ActualValue = sp;
|
---|
| 189 | return base.Apply();
|
---|
| 190 | }
|
---|
| 191 | }
|
---|
| 192 | } |
---|