[13939] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13939] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 30 | public class FriedmanRandomFunction : ArtificialRegressionDataDescriptor {
|
---|
[14110] | 31 | private readonly int nTrainingSamples;
|
---|
| 32 | private readonly int nTestSamples;
|
---|
[13939] | 33 |
|
---|
[14110] | 34 | private readonly int numberOfFeatures;
|
---|
| 35 | private readonly double noiseRatio;
|
---|
| 36 | private readonly IRandom random;
|
---|
[13939] | 37 |
|
---|
| 38 | public override string Name { get { return string.Format("FriedmanRandomFunction-{0:0%} ({1} dim)", noiseRatio, numberOfFeatures); } }
|
---|
| 39 | public override string Description {
|
---|
| 40 | get {
|
---|
| 41 | return "The data are generated using the random function generator described in 'Friedman: Greedy Function Approximation: A Gradient Boosting Machine, 1999'.";
|
---|
| 42 | }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | public FriedmanRandomFunction(int numberOfFeatures, double noiseRatio,
|
---|
| 46 | IRandom rand)
|
---|
| 47 | : this(500, 5000, numberOfFeatures, noiseRatio, rand) { }
|
---|
| 48 |
|
---|
| 49 | public FriedmanRandomFunction(int nTrainingSamples, int nTestSamples,
|
---|
| 50 | int numberOfFeatures, double noiseRatio, IRandom rand) {
|
---|
| 51 | this.nTrainingSamples = nTrainingSamples;
|
---|
| 52 | this.nTestSamples = nTestSamples;
|
---|
| 53 | this.noiseRatio = noiseRatio;
|
---|
| 54 | this.random = rand;
|
---|
| 55 | this.numberOfFeatures = numberOfFeatures;
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 59 |
|
---|
| 60 | protected override string[] VariableNames {
|
---|
| 61 | get { return AllowedInputVariables.Concat(new string[] { "Y" }).ToArray(); }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | protected override string[] AllowedInputVariables {
|
---|
| 65 | get {
|
---|
| 66 | return Enumerable.Range(1, numberOfFeatures)
|
---|
| 67 | .Select(i => string.Format("X{0:000}", i))
|
---|
| 68 | .ToArray();
|
---|
| 69 | }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 73 | protected override int TrainingPartitionEnd { get { return nTrainingSamples; } }
|
---|
| 74 | protected override int TestPartitionStart { get { return nTrainingSamples; } }
|
---|
| 75 | protected override int TestPartitionEnd { get { return nTrainingSamples + nTestSamples; } }
|
---|
| 76 |
|
---|
| 77 |
|
---|
| 78 | protected override List<List<double>> GenerateValues() {
|
---|
| 79 | List<List<double>> data = new List<List<double>>();
|
---|
| 80 |
|
---|
| 81 | var nrand = new NormalDistributedRandom(random, 0, 1);
|
---|
| 82 | for (int c = 0; c < numberOfFeatures; c++) {
|
---|
| 83 | var datai = Enumerable.Range(0, TestPartitionEnd).Select(_ => nrand.NextDouble()).ToList();
|
---|
| 84 | data.Add(datai);
|
---|
| 85 | }
|
---|
| 86 | var y = GenerateRandomFunction(random, data);
|
---|
| 87 |
|
---|
| 88 | var targetSigma = y.StandardDeviation();
|
---|
| 89 | var noisePrng = new NormalDistributedRandom(random, 0, targetSigma * Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
| 90 |
|
---|
| 91 | data.Add(y.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
| 92 |
|
---|
| 93 | return data;
|
---|
| 94 | }
|
---|
| 95 |
|
---|
[14751] | 96 | // as described in Greedy Function Approximation paper
|
---|
[13939] | 97 | private IEnumerable<double> GenerateRandomFunction(IRandom rand, List<List<double>> xs, int nTerms = 20) {
|
---|
| 98 | int nRows = xs.First().Count;
|
---|
| 99 |
|
---|
| 100 | var gz = new List<double[]>();
|
---|
| 101 | for (int i = 0; i < nTerms; i++) {
|
---|
| 102 |
|
---|
| 103 | // alpha ~ U(-1, 1)
|
---|
| 104 | double alpha = rand.NextDouble() * 2 - 1;
|
---|
| 105 | double r = -Math.Log(1.0 - rand.NextDouble()) * 2.0; // r is exponentially distributed with lambda = 2
|
---|
| 106 | int nl = (int)Math.Floor(1.5 + r); // number of selected vars is likely to be between three and four
|
---|
| 107 |
|
---|
| 108 |
|
---|
| 109 | var selectedVars = xs.Shuffle(random).Take(nl).ToArray();
|
---|
| 110 | gz.Add(SampleRandomFunction(random, selectedVars)
|
---|
| 111 | .Select(f => alpha * f)
|
---|
| 112 | .ToArray());
|
---|
| 113 | }
|
---|
| 114 | // sum up
|
---|
| 115 | return Enumerable.Range(0, nRows)
|
---|
| 116 | .Select(r => gz.Sum(gzi => gzi[r]));
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | private IEnumerable<double> SampleRandomFunction(IRandom random, List<double>[] xs) {
|
---|
| 120 | int nl = xs.Length;
|
---|
| 121 | // mu is generated from same distribution as x
|
---|
| 122 | double[] mu = Enumerable.Range(0, nl).Select(_ => random.NextDouble() * 2 - 1).ToArray();
|
---|
| 123 | double[,] v = new double[nl, nl];
|
---|
| 124 | var condNum = 4.0 / 0.01; // as given in the paper for max and min eigen values
|
---|
| 125 |
|
---|
| 126 | // temporarily use different random number generator in alglib
|
---|
| 127 | var curRand = alglib.math.rndobject;
|
---|
| 128 | alglib.math.rndobject = new System.Random(random.Next());
|
---|
| 129 |
|
---|
| 130 | alglib.matgen.spdmatrixrndcond(nl, condNum, ref v);
|
---|
| 131 | // restore
|
---|
| 132 | alglib.math.rndobject = curRand;
|
---|
| 133 |
|
---|
| 134 | int nRows = xs.First().Count;
|
---|
| 135 | var z = new double[nl];
|
---|
| 136 | var y = new double[nl];
|
---|
| 137 | for (int i = 0; i < nRows; i++) {
|
---|
| 138 | for (int j = 0; j < nl; j++) z[j] = xs[j][i] - mu[j];
|
---|
| 139 | alglib.ablas.rmatrixmv(nl, nl, v, 0, 0, 0, z, 0, ref y, 0);
|
---|
| 140 |
|
---|
| 141 | // dot prod
|
---|
| 142 | var s = 0.0;
|
---|
| 143 | for (int j = 0; j < nl; j++) s += z[j] * y[j];
|
---|
| 144 |
|
---|
| 145 | yield return s;
|
---|
| 146 | }
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 | }
|
---|