1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Random;
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
30 | [StorableClass]
|
---|
31 | public sealed class FactorVariableTreeNode : SymbolicExpressionTreeTerminalNode, IVariableTreeNode {
|
---|
32 | public new FactorVariable Symbol {
|
---|
33 | get { return (FactorVariable)base.Symbol; }
|
---|
34 | }
|
---|
35 | [Storable]
|
---|
36 | private double[] weights;
|
---|
37 | public double[] Weights {
|
---|
38 | get { return weights; }
|
---|
39 | set { weights = value; }
|
---|
40 | }
|
---|
41 | [Storable]
|
---|
42 | private string variableName;
|
---|
43 | public string VariableName {
|
---|
44 | get { return variableName; }
|
---|
45 | set { variableName = value; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | [StorableConstructor]
|
---|
49 | private FactorVariableTreeNode(bool deserializing) : base(deserializing) { }
|
---|
50 | private FactorVariableTreeNode(FactorVariableTreeNode original, Cloner cloner)
|
---|
51 | : base(original, cloner) {
|
---|
52 | variableName = original.variableName;
|
---|
53 | if (original.weights != null) {
|
---|
54 | this.weights = new double[original.Weights.Length];
|
---|
55 | Array.Copy(original.Weights, weights, weights.Length);
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public FactorVariableTreeNode(FactorVariable variableSymbol)
|
---|
60 | : base(variableSymbol) {
|
---|
61 | }
|
---|
62 |
|
---|
63 | public override bool HasLocalParameters {
|
---|
64 | get { return true; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public override void ResetLocalParameters(IRandom random) {
|
---|
68 | base.ResetLocalParameters(random);
|
---|
69 | variableName = Symbol.VariableNames.SampleRandom(random);
|
---|
70 | weights =
|
---|
71 | Symbol.GetVariableValues(variableName)
|
---|
72 | .Select(_ => NormalDistributedRandom.NextDouble(random, 0, 1)).ToArray();
|
---|
73 | }
|
---|
74 |
|
---|
75 | public override void ShakeLocalParameters(IRandom random, double shakingFactor) {
|
---|
76 | if (random.NextDouble() < 0.2) {
|
---|
77 | VariableName = Symbol.VariableNames.SampleRandom(random);
|
---|
78 | if (weights.Length != Symbol.GetVariableValues(VariableName).Count()) {
|
---|
79 | // if the length of the weight array does not match => re-initialize weights
|
---|
80 | weights =
|
---|
81 | Symbol.GetVariableValues(variableName)
|
---|
82 | .Select(_ => NormalDistributedRandom.NextDouble(random, 0, 1))
|
---|
83 | .ToArray();
|
---|
84 | }
|
---|
85 | } else {
|
---|
86 | // mutate only one randomly selected weight
|
---|
87 | var idx = random.Next(weights.Length);
|
---|
88 | // 50% additive & 50% multiplicative
|
---|
89 | if (random.NextDouble() < 0.5) {
|
---|
90 | double x = NormalDistributedRandom.NextDouble(random, Symbol.WeightManipulatorMu,
|
---|
91 | Symbol.WeightManipulatorSigma);
|
---|
92 | weights[idx] = weights[idx] + x * shakingFactor;
|
---|
93 | } else {
|
---|
94 | double x = NormalDistributedRandom.NextDouble(random, 1.0, Symbol.MultiplicativeWeightManipulatorSigma);
|
---|
95 | weights[idx] = weights[idx] * x;
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
101 | return new FactorVariableTreeNode(this, cloner);
|
---|
102 | }
|
---|
103 |
|
---|
104 | public double GetValue(string cat) {
|
---|
105 | // TODO: perf
|
---|
106 | var s = Symbol;
|
---|
107 | int idx = 0;
|
---|
108 | foreach (var val in s.GetVariableValues(VariableName)) {
|
---|
109 | if (cat == val) return weights[idx];
|
---|
110 | idx++;
|
---|
111 | }
|
---|
112 | throw new ArgumentOutOfRangeException("Found unknown value " + cat + " for variable " + VariableName);
|
---|
113 | }
|
---|
114 |
|
---|
115 | public override string ToString() {
|
---|
116 | var weightStr = string.Join("; ",
|
---|
117 | Symbol.GetVariableValues(VariableName).Select(value => value + ": " + GetValue(value).ToString("E4")));
|
---|
118 | return VariableName + " (factor) "
|
---|
119 | + "[" + weightStr + "]";
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|