1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Common {
|
---|
27 | public static class EnumerableExtensions {
|
---|
28 | /// <summary>
|
---|
29 | /// Selects all elements in the sequence that are maximal with respect to the given value.
|
---|
30 | /// </summary>
|
---|
31 | /// <remarks>
|
---|
32 | /// Runtime complexity of the operation is O(N).
|
---|
33 | /// </remarks>
|
---|
34 | /// <typeparam name="T">The type of the elements.</typeparam>
|
---|
35 | /// <param name="source">The enumeration in which the items with a maximal value should be found.</param>
|
---|
36 | /// <param name="valueSelector">The function that selects the value to compare.</param>
|
---|
37 | /// <returns>All elements in the enumeration where the selected value is the maximum.</returns>
|
---|
38 | public static IEnumerable<T> MaxItems<T>(this IEnumerable<T> source, Func<T, IComparable> valueSelector) {
|
---|
39 | IEnumerator<T> enumerator = source.GetEnumerator();
|
---|
40 | if (!enumerator.MoveNext()) return Enumerable.Empty<T>();
|
---|
41 | IComparable max = valueSelector(enumerator.Current);
|
---|
42 | var result = new List<T>();
|
---|
43 | result.Add(enumerator.Current);
|
---|
44 |
|
---|
45 | while (enumerator.MoveNext()) {
|
---|
46 | T item = enumerator.Current;
|
---|
47 | IComparable comparison = valueSelector(item);
|
---|
48 | if (comparison.CompareTo(max) > 0) {
|
---|
49 | result.Clear();
|
---|
50 | result.Add(item);
|
---|
51 | max = comparison;
|
---|
52 | } else if (comparison.CompareTo(max) == 0) {
|
---|
53 | result.Add(item);
|
---|
54 | }
|
---|
55 | }
|
---|
56 | return result;
|
---|
57 | }
|
---|
58 |
|
---|
59 | /// <summary>
|
---|
60 | /// Selects all elements in the sequence that are minimal with respect to the given value.
|
---|
61 | /// </summary>
|
---|
62 | /// <remarks>
|
---|
63 | /// Runtime complexity of the operation is O(N).
|
---|
64 | /// </remarks>
|
---|
65 | /// <typeparam name="T">The type of the elements.</typeparam>
|
---|
66 | /// <param name="source">The enumeration in which items with a minimal value should be found.</param>
|
---|
67 | /// <param name="valueSelector">The function that selects the value.</param>
|
---|
68 | /// <returns>All elements in the enumeration where the selected value is the minimum.</returns>
|
---|
69 | public static IEnumerable<T> MinItems<T>(this IEnumerable<T> source, Func<T, IComparable> valueSelector) {
|
---|
70 | IEnumerator<T> enumerator = source.GetEnumerator();
|
---|
71 | if (!enumerator.MoveNext()) return Enumerable.Empty<T>();
|
---|
72 | IComparable min = valueSelector(enumerator.Current);
|
---|
73 | var result = new List<T>();
|
---|
74 | result.Add(enumerator.Current);
|
---|
75 |
|
---|
76 | while (enumerator.MoveNext()) {
|
---|
77 | T item = enumerator.Current;
|
---|
78 | IComparable comparison = valueSelector(item);
|
---|
79 | if (comparison.CompareTo(min) < 0) {
|
---|
80 | result.Clear();
|
---|
81 | result.Add(item);
|
---|
82 | min = comparison;
|
---|
83 | } else if (comparison.CompareTo(min) == 0) {
|
---|
84 | result.Add(item);
|
---|
85 | }
|
---|
86 | }
|
---|
87 | return result;
|
---|
88 | }
|
---|
89 |
|
---|
90 | /// <summary>
|
---|
91 | /// Compute the n-ary cartesian product of arbitrarily many sequences: http://blogs.msdn.com/b/ericlippert/archive/2010/06/28/computing-a-cartesian-product-with-linq.aspx
|
---|
92 | /// </summary>
|
---|
93 | /// <typeparam name="T">The type of the elements inside each sequence</typeparam>
|
---|
94 | /// <param name="sequences">The collection of sequences</param>
|
---|
95 | /// <returns>An enumerable sequence of all the possible combinations of elements</returns>
|
---|
96 | public static IEnumerable<IEnumerable<T>> CartesianProduct<T>(this IEnumerable<IEnumerable<T>> sequences) {
|
---|
97 | IEnumerable<IEnumerable<T>> result = new[] { Enumerable.Empty<T>() };
|
---|
98 | return sequences.Where(s => s.Any()).Aggregate(result, (current, s) => (from seq in current from item in s select seq.Concat(new[] { item })));
|
---|
99 | }
|
---|
100 |
|
---|
101 | /// <summary>
|
---|
102 | /// Compute all k-combinations of elements from the provided collection.
|
---|
103 | /// <param name="elements">The collection of elements</param>
|
---|
104 | /// <param name="k">The combination group size</param>
|
---|
105 | /// <returns>An enumerable sequence of all the possible k-combinations of elements</returns>
|
---|
106 | /// </summary>
|
---|
107 | public static IEnumerable<IEnumerable<T>> Combinations<T>(this IList<T> elements, int k) {
|
---|
108 | if (k > elements.Count)
|
---|
109 | throw new ArgumentException();
|
---|
110 |
|
---|
111 | if (k == 1) {
|
---|
112 | foreach (var element in elements)
|
---|
113 | yield return new[] { element };
|
---|
114 | yield break;
|
---|
115 | }
|
---|
116 |
|
---|
117 | int n = elements.Count;
|
---|
118 | var range = Enumerable.Range(0, k).ToArray();
|
---|
119 | var length = BinomialCoefficient(n, k);
|
---|
120 |
|
---|
121 | for (int i = 0; i < length; ++i) {
|
---|
122 | yield return range.Select(x => elements[x]);
|
---|
123 |
|
---|
124 | if (i == length - 1) break;
|
---|
125 | var m = k - 1;
|
---|
126 | var max = n - 1;
|
---|
127 |
|
---|
128 | while (range[m] == max) { --m; --max; }
|
---|
129 | range[m]++;
|
---|
130 | for (int j = m + 1; j < k; ++j) {
|
---|
131 | range[j] = range[j - 1] + 1;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | /// <summary>
|
---|
137 | /// This function gets the total number of unique combinations based upon N and K,
|
---|
138 | /// where N is the total number of items and K is the size of the group.
|
---|
139 | /// It calculates the total number of unique combinations C(N, K) = N! / ( K! (N - K)! )
|
---|
140 | /// using the recursion C(N+1, K+1) = (N+1 / K+1) * C(N, K).
|
---|
141 | /// <remarks>http://blog.plover.com/math/choose.html</remarks>
|
---|
142 | /// <remark>https://en.wikipedia.org/wiki/Binomial_coefficient#Multiplicative_formula</remark>
|
---|
143 | /// <param name="n">The number of elements</param>
|
---|
144 | /// <param name="k">The size of the group</param>
|
---|
145 | /// <returns>The binomial coefficient C(N, K)</returns>
|
---|
146 | /// </summary>
|
---|
147 | public static long BinomialCoefficient(long n, long k) {
|
---|
148 | if (k > n) return 0;
|
---|
149 | if (k == n) return 1;
|
---|
150 | if (k > n - k)
|
---|
151 | k = n - k;
|
---|
152 |
|
---|
153 | // enable explicit overflow checking for very large coefficients
|
---|
154 | checked {
|
---|
155 | long r = 1;
|
---|
156 | for (long d = 1; d <= k; d++) {
|
---|
157 | r *= n--;
|
---|
158 | r /= d;
|
---|
159 | }
|
---|
160 | return r;
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|
164 | }
|
---|