Free cookie consent management tool by TermsFeed Policy Generator

source: branches/symbreg-factors-2650/HeuristicLab.Algorithms.DataAnalysis.Views/3.4/RandomForestModelView.cs @ 14853

Last change on this file since 14853 was 14351, checked in by gkronber, 8 years ago

#2650: merged r14332:14350 from trunk to branch

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Drawing;
23using HeuristicLab.MainForm;
24using HeuristicLab.Problems.DataAnalysis;
25using HeuristicLab.Problems.DataAnalysis.Symbolic;
26using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
27using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
28using HeuristicLab.Problems.DataAnalysis.Views;
29
30namespace HeuristicLab.Algorithms.DataAnalysis.Views {
31  [View("Random forest model")]
32  [Content(typeof(IRandomForestRegressionSolution), false)]
33  [Content(typeof(IRandomForestClassificationSolution), false)]
34  public partial class RandomForestModelView : DataAnalysisSolutionEvaluationView {
35    public override Image ViewImage {
36      get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
37    }
38
39    protected override void SetEnabledStateOfControls() {
40      base.SetEnabledStateOfControls();
41      listBox.Enabled = Content != null;
42      viewHost.Enabled = Content != null;
43    }
44
45    public RandomForestModelView()
46      : base() {
47      InitializeComponent();
48    }
49
50    protected override void OnContentChanged() {
51      base.OnContentChanged();
52      if (Content == null) {
53        viewHost.Content = null;
54        listBox.Items.Clear();
55      } else {
56        viewHost.Content = null;
57        listBox.Items.Clear();
58        var classSol = Content as IRandomForestClassificationSolution;
59        var regSol = Content as IRandomForestRegressionSolution;
60        var numTrees = classSol != null ? classSol.NumberOfTrees : regSol != null ? regSol.NumberOfTrees : 0;
61        for (int i = 0; i < numTrees; i++) {
62          listBox.Items.Add(i + 1);
63        }
64      }
65    }
66
67    private void listBox_SelectedIndexChanged(object sender, System.EventArgs e) {
68      if (listBox.SelectedItem == null) viewHost.Content = null;
69      else {
70        var idx = (int)listBox.SelectedItem;
71        idx -= 1;
72        var rfModel = Content.Model as RandomForestModel;
73        var regProblemData = Content.ProblemData as IRegressionProblemData;
74        var classProblemData = Content.ProblemData as IClassificationProblemData;
75        if (rfModel != null) {
76          if (idx < 0 || idx >= rfModel.NumberOfTrees) return;
77          if (regProblemData != null) {
78            var syModel = new SymbolicRegressionModel(regProblemData.TargetVariable, rfModel.ExtractTree(idx),
79              new SymbolicDataAnalysisExpressionTreeLinearInterpreter());
80            viewHost.Content = syModel.CreateRegressionSolution(regProblemData);
81          } else if (classProblemData != null) {
82            var syModel = new SymbolicDiscriminantFunctionClassificationModel(classProblemData.TargetVariable, rfModel.ExtractTree(idx),
83              new SymbolicDataAnalysisExpressionTreeLinearInterpreter(), new NormalDistributionCutPointsThresholdCalculator());
84            syModel.RecalculateModelParameters(classProblemData, classProblemData.TrainingIndices);
85            viewHost.Content = syModel.CreateClassificationSolution(classProblemData);
86          }
87        }
88      }
89    }
90  }
91}
Note: See TracBrowser for help on using the repository browser.