[9262] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using System.Text;
|
---|
| 5 | using HeuristicLab.Core;
|
---|
| 6 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 7 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 8 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
| 9 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 10 | using HeuristicLab.Common;
|
---|
| 11 | using HeuristicLab.Data;
|
---|
| 12 | using HeuristicLab.Parameters;
|
---|
| 13 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 14 |
|
---|
| 15 | namespace HeuristicLab.Problems.TradeRules
|
---|
| 16 | {
|
---|
| 17 | [Item("TradeRulesSingleObjectiveValidationBestSolutionAnalyzer", "An operator that analyzes the validation best symbolic regression solution for single objective symbolic regression problems.")]
|
---|
| 18 | [StorableClass]
|
---|
| 19 | public sealed class TradeRulesSingleObjectiveValidationBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationBestSolutionAnalyzer<ISymbolicRegressionSolution, ISymbolicRegressionSingleObjectiveEvaluator, IRegressionProblemData>,
|
---|
| 20 | ISymbolicDataAnalysisBoundedOperator
|
---|
| 21 | {
|
---|
| 22 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 23 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
| 24 |
|
---|
| 25 | #region parameter properties
|
---|
| 26 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 27 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
| 28 | }
|
---|
| 29 | public IValueParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
| 30 | get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
| 31 | }
|
---|
| 32 | #endregion
|
---|
| 33 |
|
---|
| 34 | #region properties
|
---|
| 35 | public BoolValue ApplyLinearScaling {
|
---|
| 36 | get { return ApplyLinearScalingParameter.Value; }
|
---|
| 37 | }
|
---|
| 38 | #endregion
|
---|
| 39 |
|
---|
| 40 | [StorableConstructor]
|
---|
| 41 | private TradeRulesSingleObjectiveValidationBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 42 | private TradeRulesSingleObjectiveValidationBestSolutionAnalyzer(TradeRulesSingleObjectiveValidationBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 43 | public TradeRulesSingleObjectiveValidationBestSolutionAnalyzer()
|
---|
| 44 | : base() {
|
---|
| 45 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model."));
|
---|
| 46 | Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(false)));
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 50 | return new TradeRulesSingleObjectiveValidationBestSolutionAnalyzer(this, cloner);
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
|
---|
| 54 | var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
| 55 | if (ApplyLinearScaling.Value)
|
---|
| 56 | SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue);
|
---|
| 57 | return new TradingRulesSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | }
|
---|
| 61 | }
|
---|