Free cookie consent management tool by TermsFeed Policy Generator

source: branches/sluengo/HeuristicLab.Problems.TradeRules/Evaluator/TradeRulesSingleObjectiveEvaluator.cs @ 17203

Last change on this file since 17203 was 9262, checked in by sluengo, 12 years ago
File size: 4.7 KB
RevLine 
[9262]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis.Symbolic;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
33namespace HeuristicLab.Problems.TradeRules {
34  [StorableClass]
35    public abstract class TradeRulesSingleObjectiveEvaluator : TradeRulesAnalysisSingleObjectiveEvaluator<IRegressionProblemData>, ISymbolicRegressionSingleObjectiveEvaluator
36    {
37    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
38    public IFixedValueParameter<BoolValue> ApplyLinearScalingParameter {
39      get { return (IFixedValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
40    }
41    public bool ApplyLinearScaling {
42      get { return ApplyLinearScalingParameter.Value.Value; }
43      set { ApplyLinearScalingParameter.Value.Value = value; }
44    }
45
46    [StorableConstructor]
47    protected TradeRulesSingleObjectiveEvaluator(bool deserializing) : base(deserializing) { }
48    protected TradeRulesSingleObjectiveEvaluator(TradeRulesSingleObjectiveEvaluator original, Cloner cloner) : base(original, cloner) { }
49    protected TradeRulesSingleObjectiveEvaluator()
50      : base() {
51      Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.", new BoolValue(false)));
52      ApplyLinearScalingParameter.Hidden = true;
53    }
54
55    [StorableHook(HookType.AfterDeserialization)]
56    private void AfterDeserialization() {
57      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
58        Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.", new BoolValue(false)));
59        ApplyLinearScalingParameter.Hidden = true;
60      }
61    }
62
63    [ThreadStatic]
64    private static double[] cache;
65
66    protected static void CalculateWithScaling(IEnumerable<double> targetValues, IEnumerable<double> estimatedValues,
67      double lowerEstimationLimit, double upperEstimationLimit,
68      IOnlineCalculator calculator, int maxRows) {
69      if (cache == null || cache.GetLength(0) < maxRows) {
70        cache = new double[maxRows];
71      }
72
73      //calculate linear scaling
74      //the static methods of the calculator could not be used as it performs a check if the enumerators have an equal amount of elements
75      //this is not true if the cache is used
76      int i = 0;
77      var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
78      var targetValuesEnumerator = targetValues.GetEnumerator();
79      var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
80      while (targetValuesEnumerator.MoveNext() && estimatedValuesEnumerator.MoveNext()) {
81        double target = targetValuesEnumerator.Current;
82        double estimated = estimatedValuesEnumerator.Current;
83        cache[i] = estimated;
84        linearScalingCalculator.Add(estimated, target);
85        i++;
86      }
87      double alpha = linearScalingCalculator.Alpha;
88      double beta = linearScalingCalculator.Beta;
89
90      //calculate the quality by using the passed online calculator
91      targetValuesEnumerator = targetValues.GetEnumerator();
92      var scaledBoundedEstimatedValuesEnumerator = Enumerable.Range(0, i).Select(x => cache[x] * beta + alpha)
93        .LimitToRange(lowerEstimationLimit, upperEstimationLimit).GetEnumerator();
94
95      while (targetValuesEnumerator.MoveNext() & scaledBoundedEstimatedValuesEnumerator.MoveNext()) {
96        calculator.Add(targetValuesEnumerator.Current, scaledBoundedEstimatedValuesEnumerator.Current);
97      }
98    }
99  }
100}
Note: See TracBrowser for help on using the repository browser.