1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using System.Xml;
|
---|
28 | using HeuristicLab.CEDMA.DB.Interfaces;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.CEDMA.Core {
|
---|
32 |
|
---|
33 | public enum LearningTask {
|
---|
34 | Classification,
|
---|
35 | Regression,
|
---|
36 | TimeSeries,
|
---|
37 | Clustering
|
---|
38 | }
|
---|
39 |
|
---|
40 | /// <summary>
|
---|
41 | /// Problem describes the data mining task.
|
---|
42 | /// Contains the actual data and meta-data:
|
---|
43 | /// * which variables should be modelled
|
---|
44 | /// * regression, time-series or classification problem
|
---|
45 | /// </summary>
|
---|
46 | public class Problem : ItemBase {
|
---|
47 | private string name;
|
---|
48 | public string Name {
|
---|
49 | get { return name; }
|
---|
50 | }
|
---|
51 | private HeuristicLab.DataAnalysis.Dataset dataset;
|
---|
52 | public HeuristicLab.DataAnalysis.Dataset DataSet {
|
---|
53 | get { return dataset; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | private int trainingSamplesStart;
|
---|
57 | public int TrainingSamplesStart {
|
---|
58 | get { return trainingSamplesStart; }
|
---|
59 | set { trainingSamplesStart = value; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | private int trainingSamplesEnd;
|
---|
63 | public int TrainingSamplesEnd {
|
---|
64 | get { return trainingSamplesEnd; }
|
---|
65 | set { trainingSamplesEnd = value; }
|
---|
66 | }
|
---|
67 |
|
---|
68 | private int validationSamplesStart;
|
---|
69 | public int ValidationSamplesStart {
|
---|
70 | get { return validationSamplesStart; }
|
---|
71 | set { validationSamplesStart = value; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | private int validationSamplesEnd;
|
---|
75 | public int ValidationSamplesEnd {
|
---|
76 | get { return validationSamplesEnd; }
|
---|
77 | set { validationSamplesEnd = value; }
|
---|
78 | }
|
---|
79 |
|
---|
80 | private int testSamplesStart;
|
---|
81 | public int TestSamplesStart {
|
---|
82 | get { return testSamplesStart; }
|
---|
83 | set { testSamplesStart = value; }
|
---|
84 | }
|
---|
85 |
|
---|
86 | private int testSamplesEnd;
|
---|
87 | public int TestSamplesEnd {
|
---|
88 | get { return testSamplesEnd; }
|
---|
89 | set { testSamplesEnd = value; }
|
---|
90 | }
|
---|
91 |
|
---|
92 | private List<int> allowedInputVariables;
|
---|
93 | public List<int> AllowedInputVariables {
|
---|
94 | get { return allowedInputVariables; }
|
---|
95 | }
|
---|
96 |
|
---|
97 | private List<int> allowedTargetVariables;
|
---|
98 | public List<int> AllowedTargetVariables {
|
---|
99 | get { return allowedTargetVariables; }
|
---|
100 | }
|
---|
101 |
|
---|
102 | private bool autoRegressive;
|
---|
103 | public bool AutoRegressive {
|
---|
104 | get { return autoRegressive; }
|
---|
105 | set { autoRegressive = value; }
|
---|
106 | }
|
---|
107 |
|
---|
108 | private LearningTask learningTask;
|
---|
109 | public LearningTask LearningTask {
|
---|
110 | get { return learningTask; }
|
---|
111 | set { learningTask = value; }
|
---|
112 | }
|
---|
113 |
|
---|
114 | public Problem()
|
---|
115 | : base() {
|
---|
116 | dataset = new DataAnalysis.Dataset();
|
---|
117 | allowedInputVariables = new List<int>();
|
---|
118 | allowedTargetVariables = new List<int>();
|
---|
119 | }
|
---|
120 |
|
---|
121 |
|
---|
122 | public string GetVariableName(int index) {
|
---|
123 | return dataset.GetVariableName(index);
|
---|
124 | }
|
---|
125 |
|
---|
126 | public override IView CreateView() {
|
---|
127 | return new ProblemView(this);
|
---|
128 | }
|
---|
129 |
|
---|
130 | public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
|
---|
131 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
132 | node.AppendChild(PersistenceManager.Persist("DataSet", dataset, document, persistedObjects));
|
---|
133 | XmlAttribute trainingSamplesStartAttr = document.CreateAttribute("TrainingSamplesStart");
|
---|
134 | trainingSamplesStartAttr.Value = TrainingSamplesStart.ToString();
|
---|
135 | XmlAttribute trainingSamplesEndAttr = document.CreateAttribute("TrainingSamplesEnd");
|
---|
136 | trainingSamplesEndAttr.Value = TrainingSamplesEnd.ToString();
|
---|
137 | XmlAttribute validationSamplesStartAttr = document.CreateAttribute("ValidationSamplesStart");
|
---|
138 | validationSamplesStartAttr.Value = ValidationSamplesStart.ToString();
|
---|
139 | XmlAttribute validationSamplesEndAttr = document.CreateAttribute("ValidationSamplesEnd");
|
---|
140 | validationSamplesEndAttr.Value = ValidationSamplesEnd.ToString();
|
---|
141 | XmlAttribute testSamplesStartAttr = document.CreateAttribute("TestSamplesStart");
|
---|
142 | testSamplesStartAttr.Value = TestSamplesStart.ToString();
|
---|
143 | XmlAttribute testSamplesEndAttr = document.CreateAttribute("TestSamplesEnd");
|
---|
144 | testSamplesEndAttr.Value = TestSamplesEnd.ToString();
|
---|
145 | XmlAttribute learningTaskAttr = document.CreateAttribute("LearningTask");
|
---|
146 | learningTaskAttr.Value = LearningTask.ToString();
|
---|
147 | XmlAttribute autoRegressiveAttr = document.CreateAttribute("AutoRegressive");
|
---|
148 | autoRegressiveAttr.Value = AutoRegressive.ToString();
|
---|
149 |
|
---|
150 | node.Attributes.Append(trainingSamplesStartAttr);
|
---|
151 | node.Attributes.Append(trainingSamplesEndAttr);
|
---|
152 | node.Attributes.Append(validationSamplesStartAttr);
|
---|
153 | node.Attributes.Append(validationSamplesEndAttr);
|
---|
154 | node.Attributes.Append(testSamplesStartAttr);
|
---|
155 | node.Attributes.Append(testSamplesEndAttr);
|
---|
156 | node.Attributes.Append(learningTaskAttr);
|
---|
157 | node.Attributes.Append(autoRegressiveAttr);
|
---|
158 |
|
---|
159 | XmlElement targetVariablesElement = document.CreateElement("AllowedTargetVariables");
|
---|
160 | targetVariablesElement.InnerText = SemiColonSeparatedList(AllowedTargetVariables);
|
---|
161 | XmlElement inputVariablesElement = document.CreateElement("AllowedInputVariables");
|
---|
162 | inputVariablesElement.InnerText = SemiColonSeparatedList(AllowedInputVariables);
|
---|
163 | node.AppendChild(targetVariablesElement);
|
---|
164 | node.AppendChild(inputVariablesElement);
|
---|
165 | return node;
|
---|
166 | }
|
---|
167 |
|
---|
168 | public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
|
---|
169 | base.Populate(node, restoredObjects);
|
---|
170 | dataset = (HeuristicLab.DataAnalysis.Dataset)PersistenceManager.Restore(node.SelectSingleNode("DataSet"), restoredObjects);
|
---|
171 | TrainingSamplesStart = int.Parse(node.Attributes["TrainingSamplesStart"].Value);
|
---|
172 | TrainingSamplesEnd = int.Parse(node.Attributes["TrainingSamplesEnd"].Value);
|
---|
173 | ValidationSamplesStart = int.Parse(node.Attributes["ValidationSamplesStart"].Value);
|
---|
174 | ValidationSamplesEnd = int.Parse(node.Attributes["ValidationSamplesEnd"].Value);
|
---|
175 | TestSamplesStart = int.Parse(node.Attributes["TestSamplesStart"].Value);
|
---|
176 | TestSamplesEnd = int.Parse(node.Attributes["TestSamplesEnd"].Value);
|
---|
177 | LearningTask = (LearningTask)Enum.Parse(typeof(LearningTask), node.Attributes["LearningTask"].Value);
|
---|
178 | AutoRegressive = bool.Parse(node.Attributes["AutoRegressive"].Value);
|
---|
179 | allowedTargetVariables.Clear();
|
---|
180 | foreach (string tok in node.SelectSingleNode("AllowedTargetVariables").InnerText.Split(new string[] { ";" }, StringSplitOptions.RemoveEmptyEntries))
|
---|
181 | allowedTargetVariables.Add(int.Parse(tok));
|
---|
182 | allowedInputVariables.Clear();
|
---|
183 | foreach (string tok in node.SelectSingleNode("AllowedInputVariables").InnerText.Split(new string[] { ";" }, StringSplitOptions.RemoveEmptyEntries))
|
---|
184 | allowedInputVariables.Add(int.Parse(tok));
|
---|
185 | }
|
---|
186 |
|
---|
187 | private string SemiColonSeparatedList(List<int> xs) {
|
---|
188 | StringBuilder b = new StringBuilder();
|
---|
189 | foreach (int x in xs) {
|
---|
190 | b = b.Append(x).Append(";");
|
---|
191 | }
|
---|
192 | if (xs.Count > 0) b.Remove(b.Length - 1, 1); // remove last ';'
|
---|
193 | return b.ToString();
|
---|
194 | }
|
---|
195 | }
|
---|
196 | }
|
---|