[14091] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * The implementation is inspired by the implementation in JAVA of SHADE algorithm https://sites.google.com/site/tanaberyoji/software/SHADE1.0.1_CEC2013.zip?attredirects=0&d=1
|
---|
| 8 | *
|
---|
| 9 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 10 | * it under the terms of the GNU General Public License as published by
|
---|
| 11 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 12 | * (at your option) any later version.
|
---|
| 13 | *
|
---|
| 14 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | * GNU General Public License for more details.
|
---|
| 18 | *
|
---|
| 19 | * You should have received a copy of the GNU General Public License
|
---|
| 20 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 21 | */
|
---|
[14699] | 22 |
|
---|
| 23 | #endregion
|
---|
[14091] | 24 | using HeuristicLab.Analysis;
|
---|
[14088] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Problems.TestFunctions;
|
---|
| 33 | using HeuristicLab.Random;
|
---|
| 34 | using System;
|
---|
| 35 | using System.Collections.Generic;
|
---|
| 36 | using System.Threading;
|
---|
| 37 |
|
---|
[14699] | 38 | namespace HeuristicLab.Algorithms.Shade {
|
---|
[14088] | 39 |
|
---|
[14699] | 40 | [Item("Success-History Based Parameter Adaptation for DE (SHADE)", "A self-adaptive version of differential evolution")]
|
---|
| 41 | [StorableClass]
|
---|
| 42 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)]
|
---|
| 43 | public class Shade : BasicAlgorithm {
|
---|
| 44 | public Func<IEnumerable<double>, double> Evaluation;
|
---|
[14088] | 45 |
|
---|
[14699] | 46 | public override Type ProblemType {
|
---|
| 47 | get { return typeof(SingleObjectiveTestFunctionProblem); }
|
---|
| 48 | }
|
---|
| 49 | public new SingleObjectiveTestFunctionProblem Problem {
|
---|
| 50 | get { return (SingleObjectiveTestFunctionProblem)base.Problem; }
|
---|
| 51 | set { base.Problem = value; }
|
---|
| 52 | }
|
---|
[14088] | 53 |
|
---|
[14699] | 54 | private readonly IRandom _random = new MersenneTwister();
|
---|
| 55 | private int evals;
|
---|
| 56 | private int pop_size;
|
---|
| 57 | private double arc_rate;
|
---|
| 58 | private int arc_size;
|
---|
| 59 | private double p_best_rate;
|
---|
| 60 | private int memory_size;
|
---|
[14088] | 61 |
|
---|
[14699] | 62 | private double[][] pop;
|
---|
| 63 | private double[] fitness;
|
---|
| 64 | private double[][] children;
|
---|
| 65 | private double[] children_fitness;
|
---|
[14088] | 66 |
|
---|
[14699] | 67 | private double[] bsf_solution;
|
---|
| 68 | private double bsf_fitness = 1e+30;
|
---|
| 69 | private double[,] archive;
|
---|
| 70 | private int num_arc_inds = 0;
|
---|
[14088] | 71 |
|
---|
[14699] | 72 | #region ParameterNames
|
---|
| 73 | private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
|
---|
| 74 | private const string SeedParameterName = "Seed";
|
---|
| 75 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 76 | private const string CrossoverProbabilityParameterName = "CrossoverProbability";
|
---|
| 77 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
| 78 | private const string ScalingFactorParameterName = "ScalingFactor";
|
---|
| 79 | private const string ValueToReachParameterName = "ValueToReach";
|
---|
| 80 | private const string ArchiveRateParameterName = "ArchiveRate";
|
---|
| 81 | private const string MemorySizeParameterName = "MemorySize";
|
---|
| 82 | private const string BestRateParameterName = "BestRate";
|
---|
| 83 | #endregion
|
---|
[14088] | 84 |
|
---|
[14699] | 85 | #region ParameterProperties
|
---|
| 86 | public IFixedValueParameter<IntValue> MaximumEvaluationsParameter {
|
---|
| 87 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumEvaluationsParameterName]; }
|
---|
| 88 | }
|
---|
| 89 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
| 90 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 91 | }
|
---|
| 92 | public FixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 93 | get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 94 | }
|
---|
| 95 | private ValueParameter<IntValue> PopulationSizeParameter {
|
---|
| 96 | get { return (ValueParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
| 97 | }
|
---|
| 98 | public ValueParameter<DoubleValue> CrossoverProbabilityParameter {
|
---|
| 99 | get { return (ValueParameter<DoubleValue>)Parameters[CrossoverProbabilityParameterName]; }
|
---|
| 100 | }
|
---|
| 101 | public ValueParameter<DoubleValue> ScalingFactorParameter {
|
---|
| 102 | get { return (ValueParameter<DoubleValue>)Parameters[ScalingFactorParameterName]; }
|
---|
| 103 | }
|
---|
| 104 | public ValueParameter<DoubleValue> ValueToReachParameter {
|
---|
| 105 | get { return (ValueParameter<DoubleValue>)Parameters[ValueToReachParameterName]; }
|
---|
| 106 | }
|
---|
| 107 | public ValueParameter<DoubleValue> ArchiveRateParameter {
|
---|
| 108 | get { return (ValueParameter<DoubleValue>)Parameters[ArchiveRateParameterName]; }
|
---|
| 109 | }
|
---|
| 110 | public ValueParameter<IntValue> MemorySizeParameter {
|
---|
| 111 | get { return (ValueParameter<IntValue>)Parameters[MemorySizeParameterName]; }
|
---|
| 112 | }
|
---|
| 113 | public ValueParameter<DoubleValue> BestRateParameter {
|
---|
| 114 | get { return (ValueParameter<DoubleValue>)Parameters[BestRateParameterName]; }
|
---|
| 115 | }
|
---|
| 116 | #endregion
|
---|
[14088] | 117 |
|
---|
[14699] | 118 | #region Properties
|
---|
| 119 | public int MaximumEvaluations {
|
---|
| 120 | get { return MaximumEvaluationsParameter.Value.Value; }
|
---|
| 121 | set { MaximumEvaluationsParameter.Value.Value = value; }
|
---|
| 122 | }
|
---|
[14088] | 123 |
|
---|
[14699] | 124 | public Double CrossoverProbability {
|
---|
| 125 | get { return CrossoverProbabilityParameter.Value.Value; }
|
---|
| 126 | set { CrossoverProbabilityParameter.Value.Value = value; }
|
---|
| 127 | }
|
---|
| 128 | public Double ScalingFactor {
|
---|
| 129 | get { return ScalingFactorParameter.Value.Value; }
|
---|
| 130 | set { ScalingFactorParameter.Value.Value = value; }
|
---|
| 131 | }
|
---|
| 132 | public int Seed {
|
---|
| 133 | get { return SeedParameter.Value.Value; }
|
---|
| 134 | set { SeedParameter.Value.Value = value; }
|
---|
| 135 | }
|
---|
| 136 | public bool SetSeedRandomly {
|
---|
| 137 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 138 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 139 | }
|
---|
| 140 | public IntValue PopulationSize {
|
---|
| 141 | get { return PopulationSizeParameter.Value; }
|
---|
| 142 | set { PopulationSizeParameter.Value = value; }
|
---|
| 143 | }
|
---|
| 144 | public Double ValueToReach {
|
---|
| 145 | get { return ValueToReachParameter.Value.Value; }
|
---|
| 146 | set { ValueToReachParameter.Value.Value = value; }
|
---|
| 147 | }
|
---|
| 148 | public Double ArchiveRate {
|
---|
| 149 | get { return ArchiveRateParameter.Value.Value; }
|
---|
| 150 | set { ArchiveRateParameter.Value.Value = value; }
|
---|
| 151 | }
|
---|
| 152 | public IntValue MemorySize {
|
---|
| 153 | get { return MemorySizeParameter.Value; }
|
---|
| 154 | set { MemorySizeParameter.Value = value; }
|
---|
| 155 | }
|
---|
| 156 | public Double BestRate {
|
---|
| 157 | get { return BestRateParameter.Value.Value; }
|
---|
| 158 | set { BestRateParameter.Value.Value = value; }
|
---|
| 159 | }
|
---|
| 160 | #endregion
|
---|
[14088] | 161 |
|
---|
[14699] | 162 | #region ResultsProperties
|
---|
| 163 | private double ResultsBestQuality {
|
---|
| 164 | get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
|
---|
| 165 | set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
|
---|
| 166 | }
|
---|
[14088] | 167 |
|
---|
[14699] | 168 | private double VTRBestQuality {
|
---|
| 169 | get { return ((DoubleValue)Results["VTR"].Value).Value; }
|
---|
| 170 | set { ((DoubleValue)Results["VTR"].Value).Value = value; }
|
---|
| 171 | }
|
---|
[14088] | 172 |
|
---|
[14699] | 173 | private RealVector ResultsBestSolution {
|
---|
| 174 | get { return (RealVector)Results["Best Solution"].Value; }
|
---|
| 175 | set { Results["Best Solution"].Value = value; }
|
---|
| 176 | }
|
---|
[14088] | 177 |
|
---|
[14699] | 178 | private int ResultsEvaluations {
|
---|
| 179 | get { return ((IntValue)Results["Evaluations"].Value).Value; }
|
---|
| 180 | set { ((IntValue)Results["Evaluations"].Value).Value = value; }
|
---|
| 181 | }
|
---|
| 182 | private int ResultsIterations {
|
---|
| 183 | get { return ((IntValue)Results["Iterations"].Value).Value; }
|
---|
| 184 | set { ((IntValue)Results["Iterations"].Value).Value = value; }
|
---|
| 185 | }
|
---|
[14088] | 186 |
|
---|
[14699] | 187 | private DataTable ResultsQualities {
|
---|
| 188 | get { return ((DataTable)Results["Qualities"].Value); }
|
---|
| 189 | }
|
---|
| 190 | private DataRow ResultsQualitiesBest {
|
---|
| 191 | get { return ResultsQualities.Rows["Best Quality"]; }
|
---|
| 192 | }
|
---|
[14088] | 193 |
|
---|
[14699] | 194 | #endregion
|
---|
[14088] | 195 |
|
---|
[14699] | 196 | [StorableConstructor]
|
---|
| 197 | protected Shade(bool deserializing) : base(deserializing) { }
|
---|
[14088] | 198 |
|
---|
[14699] | 199 | protected Shade(Shade original, Cloner cloner)
|
---|
| 200 | : base(original, cloner) {
|
---|
| 201 | }
|
---|
[14088] | 202 |
|
---|
[14699] | 203 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 204 | return new Shade(this, cloner);
|
---|
| 205 | }
|
---|
[14088] | 206 |
|
---|
[14699] | 207 | public Shade() {
|
---|
| 208 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue)));
|
---|
| 209 | Parameters.Add(new ValueParameter<IntValue>(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(75)));
|
---|
| 210 | Parameters.Add(new ValueParameter<DoubleValue>(ValueToReachParameterName, "Value to reach (VTR) parameter", new DoubleValue(0.00000001)));
|
---|
| 211 | Parameters.Add(new ValueParameter<DoubleValue>(ArchiveRateParameterName, "Archive rate parameter", new DoubleValue(2.0)));
|
---|
| 212 | Parameters.Add(new ValueParameter<IntValue>(MemorySizeParameterName, "Memory size parameter", new IntValue(0)));
|
---|
| 213 | Parameters.Add(new ValueParameter<DoubleValue>(BestRateParameterName, "Best rate parameter", new DoubleValue(0.1)));
|
---|
| 214 | }
|
---|
[14088] | 215 |
|
---|
[14699] | 216 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[14088] | 217 |
|
---|
[14699] | 218 | // Set up the results display
|
---|
| 219 | Results.Add(new Result("Iterations", new IntValue(0)));
|
---|
| 220 | Results.Add(new Result("Evaluations", new IntValue(0)));
|
---|
| 221 | Results.Add(new Result("Best Solution", new RealVector()));
|
---|
| 222 | Results.Add(new Result("Best Quality", new DoubleValue(double.NaN)));
|
---|
| 223 | Results.Add(new Result("VTR", new DoubleValue(double.NaN)));
|
---|
| 224 | var table = new DataTable("Qualities");
|
---|
| 225 | table.Rows.Add(new DataRow("Best Quality"));
|
---|
| 226 | Results.Add(new Result("Qualities", table));
|
---|
[14088] | 227 |
|
---|
| 228 |
|
---|
[14699] | 229 | this.evals = 0;
|
---|
| 230 | int archive_size = (int)Math.Round(ArchiveRateParameter.Value.Value * PopulationSize.Value);
|
---|
| 231 | int problem_size = Problem.ProblemSize.Value;
|
---|
[14088] | 232 |
|
---|
[14699] | 233 | int pop_size = PopulationSizeParameter.Value.Value;
|
---|
| 234 | this.arc_rate = ArchiveRateParameter.Value.Value;
|
---|
| 235 | this.arc_size = (int)Math.Round(this.arc_rate * pop_size);
|
---|
| 236 | this.p_best_rate = BestRateParameter.Value.Value;
|
---|
| 237 | this.memory_size = MemorySizeParameter.Value.Value;
|
---|
[14088] | 238 |
|
---|
[14699] | 239 | this.pop = new double[pop_size][];
|
---|
| 240 | this.fitness = new double[pop_size];
|
---|
| 241 | this.children = new double[pop_size][];
|
---|
| 242 | this.children_fitness = new double[pop_size];
|
---|
[14088] | 243 |
|
---|
[14699] | 244 | this.bsf_solution = new double[problem_size];
|
---|
| 245 | this.bsf_fitness = 1e+30;
|
---|
| 246 | this.archive = new double[arc_size, Problem.ProblemSize.Value];
|
---|
| 247 | this.num_arc_inds = 0;
|
---|
[14088] | 248 |
|
---|
[14699] | 249 | double[,] populationOld = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 250 | double[,] mutationPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 251 | double[,] trialPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 252 | double[] bestPopulation = new double[Problem.ProblemSize.Value];
|
---|
| 253 | double[] bestPopulationIteration = new double[Problem.ProblemSize.Value];
|
---|
| 254 | double[,] archive = new double[archive_size, Problem.ProblemSize.Value];
|
---|
[14088] | 255 |
|
---|
| 256 |
|
---|
[14699] | 257 | // //for external archive
|
---|
| 258 | int rand_arc_ind;
|
---|
[14088] | 259 |
|
---|
[14699] | 260 | int num_success_params;
|
---|
[14088] | 261 |
|
---|
[14699] | 262 | double[] success_sf = new double[PopulationSizeParameter.Value.Value];
|
---|
| 263 | double[] success_cr = new double[PopulationSizeParameter.Value.Value];
|
---|
| 264 | double[] dif_fitness = new double[PopulationSizeParameter.Value.Value];
|
---|
| 265 | double[] fitness = new double[PopulationSizeParameter.Value.Value];
|
---|
[14088] | 266 |
|
---|
[14699] | 267 | // the contents of M_f and M_cr are all initialiezed 0.5
|
---|
| 268 | double[] memory_sf = new double[MemorySizeParameter.Value.Value];
|
---|
| 269 | double[] memory_cr = new double[MemorySizeParameter.Value.Value];
|
---|
[14088] | 270 |
|
---|
[14699] | 271 | for(int i = 0; i < MemorySizeParameter.Value.Value; i++) {
|
---|
| 272 | memory_sf[i] = 0.5;
|
---|
| 273 | memory_cr[i] = 0.5;
|
---|
| 274 | }
|
---|
[14088] | 275 |
|
---|
[14699] | 276 | //memory index counter
|
---|
| 277 | int memory_pos = 0;
|
---|
| 278 | double temp_sum_sf1, temp_sum_sf2, temp_sum_cr1, temp_sum_cr2, temp_sum, temp_weight;
|
---|
[14088] | 279 |
|
---|
[14699] | 280 | //for new parameters sampling
|
---|
| 281 | double mu_sf, mu_cr;
|
---|
| 282 | int rand_mem_index;
|
---|
[14088] | 283 |
|
---|
[14699] | 284 | double[] pop_sf = new double[PopulationSizeParameter.Value.Value];
|
---|
| 285 | double[] pop_cr = new double[PopulationSizeParameter.Value.Value];
|
---|
[14088] | 286 |
|
---|
[14699] | 287 | //for current-to-pbest/1
|
---|
| 288 | int p_best_ind;
|
---|
| 289 | double m = PopulationSizeParameter.Value.Value * BestRateParameter.Value.Value;
|
---|
| 290 | int p_num = (int)Math.Round(m);
|
---|
| 291 | int[] sorted_array = new int[PopulationSizeParameter.Value.Value];
|
---|
| 292 | double[] sorted_fitness = new double[PopulationSizeParameter.Value.Value];
|
---|
[14088] | 293 |
|
---|
[14699] | 294 | //initialize the population
|
---|
| 295 | populationOld = makeNewIndividuals();
|
---|
[14088] | 296 |
|
---|
[14699] | 297 | //evaluate the best member after the intialiazation
|
---|
| 298 | //the idea is to select first member and after that to check the others members from the population
|
---|
[14088] | 299 |
|
---|
[14699] | 300 | int best_index = 0;
|
---|
| 301 | double[] populationRow = new double[Problem.ProblemSize.Value];
|
---|
| 302 | bestPopulation = getMatrixRow(populationOld, best_index);
|
---|
| 303 | RealVector bestPopulationVector = new RealVector(bestPopulation);
|
---|
| 304 | double bestPopulationValue = Obj(bestPopulationVector);
|
---|
| 305 | fitness[best_index] = bestPopulationValue;
|
---|
| 306 | RealVector selectionVector;
|
---|
| 307 | RealVector trialVector;
|
---|
| 308 | double qtrial;
|
---|
[14088] | 309 |
|
---|
| 310 |
|
---|
[14699] | 311 | for(var i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 312 | populationRow = getMatrixRow(populationOld, i);
|
---|
| 313 | trialVector = new RealVector(populationRow);
|
---|
[14088] | 314 |
|
---|
[14699] | 315 | qtrial = Obj(trialVector);
|
---|
| 316 | fitness[i] = qtrial;
|
---|
[14088] | 317 |
|
---|
[14699] | 318 | if(qtrial > bestPopulationValue) {
|
---|
| 319 | bestPopulationVector = new RealVector(populationRow);
|
---|
| 320 | bestPopulationValue = qtrial;
|
---|
| 321 | best_index = i;
|
---|
| 322 | }
|
---|
| 323 | }
|
---|
[14088] | 324 |
|
---|
[14699] | 325 | int iterations = 1;
|
---|
[14088] | 326 |
|
---|
[14699] | 327 | // Loop until iteration limit reached or canceled.
|
---|
| 328 | // todo replace with a function
|
---|
| 329 | // && bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value
|
---|
| 330 | while(ResultsEvaluations < MaximumEvaluations
|
---|
| 331 | && !cancellationToken.IsCancellationRequested &&
|
---|
| 332 | bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) {
|
---|
| 333 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) sorted_array[i] = i;
|
---|
| 334 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) sorted_fitness[i] = fitness[i];
|
---|
[14088] | 335 |
|
---|
[14699] | 336 | Quicksort(sorted_fitness, 0, PopulationSizeParameter.Value.Value - 1, sorted_array);
|
---|
[14088] | 337 |
|
---|
[14699] | 338 | for(int target = 0; target < PopulationSizeParameter.Value.Value; target++) {
|
---|
| 339 | rand_mem_index = (int)(_random.NextDouble() * MemorySizeParameter.Value.Value);
|
---|
| 340 | mu_sf = memory_sf[rand_mem_index];
|
---|
| 341 | mu_cr = memory_cr[rand_mem_index];
|
---|
[14088] | 342 |
|
---|
[14699] | 343 | //generate CR_i and repair its value
|
---|
| 344 | if(mu_cr == -1) {
|
---|
| 345 | pop_cr[target] = 0;
|
---|
| 346 | } else {
|
---|
| 347 | pop_cr[target] = gauss(mu_cr, 0.1);
|
---|
| 348 | if(pop_cr[target] > 1) pop_cr[target] = 1;
|
---|
| 349 | else if(pop_cr[target] < 0) pop_cr[target] = 0;
|
---|
| 350 | }
|
---|
[14088] | 351 |
|
---|
[14699] | 352 | //generate F_i and repair its value
|
---|
| 353 | do {
|
---|
| 354 | pop_sf[target] = cauchy_g(mu_sf, 0.1);
|
---|
| 355 | } while(pop_sf[target] <= 0);
|
---|
[14088] | 356 |
|
---|
[14699] | 357 | if(pop_sf[target] > 1) pop_sf[target] = 1;
|
---|
[14088] | 358 |
|
---|
[14699] | 359 | //p-best individual is randomly selected from the top pop_size * p_i members
|
---|
| 360 | p_best_ind = sorted_array[(int)(_random.NextDouble() * p_num)];
|
---|
[14088] | 361 |
|
---|
[14699] | 362 | trialPopulation = operateCurrentToPBest1BinWithArchive(populationOld, trialPopulation, target, p_best_ind, pop_sf[target], pop_cr[target]);
|
---|
| 363 | }
|
---|
[14088] | 364 |
|
---|
[14699] | 365 | for(int i = 0; i < pop_size; i++) {
|
---|
| 366 | trialVector = new RealVector(getMatrixRow(trialPopulation, i));
|
---|
| 367 | children_fitness[i] = Obj(trialVector);
|
---|
| 368 | }
|
---|
[14088] | 369 |
|
---|
[14699] | 370 | //update bfs solution
|
---|
| 371 | for(var i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 372 | populationRow = getMatrixRow(populationOld, i);
|
---|
| 373 | qtrial = fitness[i];
|
---|
[14088] | 374 |
|
---|
[14699] | 375 | if(qtrial > bestPopulationValue) {
|
---|
| 376 | bestPopulationVector = new RealVector(populationRow);
|
---|
| 377 | bestPopulationValue = qtrial;
|
---|
| 378 | best_index = i;
|
---|
| 379 | }
|
---|
| 380 | }
|
---|
[14088] | 381 |
|
---|
[14699] | 382 | num_success_params = 0;
|
---|
[14088] | 383 |
|
---|
[14699] | 384 | //generation alternation
|
---|
| 385 | for(int i = 0; i < pop_size; i++) {
|
---|
| 386 | if(children_fitness[i] == fitness[i]) {
|
---|
| 387 | fitness[i] = children_fitness[i];
|
---|
| 388 | for(int j = 0; j < problem_size; j++) populationOld[i, j] = trialPopulation[i, j];
|
---|
| 389 | } else if(children_fitness[i] < fitness[i]) {
|
---|
| 390 | //parent vectors x_i which were worse than the trial vectors u_i are preserved
|
---|
| 391 | if(arc_size > 1) {
|
---|
| 392 | if(num_arc_inds < arc_size) {
|
---|
| 393 | for(int j = 0; j < problem_size; j++) this.archive[num_arc_inds, j] = populationOld[i, j];
|
---|
| 394 | num_arc_inds++;
|
---|
[14088] | 395 |
|
---|
[14699] | 396 | }
|
---|
| 397 | //Whenever the size of the archive exceeds, randomly selected elements are deleted to make space for the newly inserted elements
|
---|
| 398 | else {
|
---|
| 399 | rand_arc_ind = (int)(_random.NextDouble() * arc_size);
|
---|
| 400 | for(int j = 0; j < problem_size; j++) this.archive[rand_arc_ind, j] = populationOld[i, j];
|
---|
| 401 | }
|
---|
| 402 | }
|
---|
[14088] | 403 |
|
---|
[14699] | 404 | dif_fitness[num_success_params] = Math.Abs(fitness[i] - children_fitness[i]);
|
---|
[14088] | 405 |
|
---|
[14699] | 406 | fitness[i] = children_fitness[i];
|
---|
| 407 | for(int j = 0; j < problem_size; j++) populationOld[i, j] = trialPopulation[i, j];
|
---|
[14088] | 408 |
|
---|
[14699] | 409 | //successful parameters are preserved in S_F and S_CR
|
---|
| 410 | success_sf[num_success_params] = pop_sf[i];
|
---|
| 411 | success_cr[num_success_params] = pop_cr[i];
|
---|
| 412 | num_success_params++;
|
---|
| 413 | }
|
---|
| 414 | }
|
---|
[14088] | 415 |
|
---|
[14699] | 416 | if(num_success_params > 0) {
|
---|
| 417 | temp_sum_sf1 = 0;
|
---|
| 418 | temp_sum_sf2 = 0;
|
---|
| 419 | temp_sum_cr1 = 0;
|
---|
| 420 | temp_sum_cr2 = 0;
|
---|
| 421 | temp_sum = 0;
|
---|
| 422 | temp_weight = 0;
|
---|
[14088] | 423 |
|
---|
[14699] | 424 | for(int i = 0; i < num_success_params; i++) temp_sum += dif_fitness[i];
|
---|
[14088] | 425 |
|
---|
[14699] | 426 | //weighted lehmer mean
|
---|
| 427 | for(int i = 0; i < num_success_params; i++) {
|
---|
| 428 | temp_weight = dif_fitness[i] / temp_sum;
|
---|
[14088] | 429 |
|
---|
[14699] | 430 | temp_sum_sf1 += temp_weight * success_sf[i] * success_sf[i];
|
---|
| 431 | temp_sum_sf2 += temp_weight * success_sf[i];
|
---|
[14088] | 432 |
|
---|
[14699] | 433 | temp_sum_cr1 += temp_weight * success_cr[i] * success_cr[i];
|
---|
| 434 | temp_sum_cr2 += temp_weight * success_cr[i];
|
---|
| 435 | }
|
---|
[14088] | 436 |
|
---|
[14699] | 437 | memory_sf[memory_pos] = temp_sum_sf1 / temp_sum_sf2;
|
---|
[14088] | 438 |
|
---|
[14699] | 439 | if(temp_sum_cr2 == 0 || memory_cr[memory_pos] == -1) {
|
---|
| 440 | memory_cr[memory_pos] = -1;
|
---|
| 441 | } else {
|
---|
| 442 | memory_cr[memory_pos] = temp_sum_cr1 / temp_sum_cr2;
|
---|
| 443 | }
|
---|
[14088] | 444 |
|
---|
[14699] | 445 | //increment the counter
|
---|
| 446 | memory_pos++;
|
---|
| 447 | if(memory_pos >= memory_size) memory_pos = 0;
|
---|
| 448 | }
|
---|
[14088] | 449 |
|
---|
[14699] | 450 | //update the best candidate
|
---|
| 451 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 452 | selectionVector = new RealVector(getMatrixRow(populationOld, i));
|
---|
| 453 | var quality = fitness[i];
|
---|
| 454 | if(quality < bestPopulationValue) {
|
---|
| 455 | bestPopulationVector = (RealVector)selectionVector.Clone();
|
---|
| 456 | bestPopulationValue = quality;
|
---|
| 457 | }
|
---|
| 458 | }
|
---|
[14088] | 459 |
|
---|
[14699] | 460 | iterations = iterations + 1;
|
---|
[14088] | 461 |
|
---|
[14699] | 462 | //update the results
|
---|
| 463 | ResultsEvaluations = evals;
|
---|
| 464 | ResultsIterations = iterations;
|
---|
| 465 | ResultsBestSolution = bestPopulationVector;
|
---|
| 466 | ResultsBestQuality = bestPopulationValue;
|
---|
[14088] | 467 |
|
---|
[14699] | 468 | //update the results in view
|
---|
| 469 | if(iterations % 10 == 0) ResultsQualitiesBest.Values.Add(bestPopulationValue);
|
---|
| 470 | if(bestPopulationValue < Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) {
|
---|
| 471 | VTRBestQuality = bestPopulationValue;
|
---|
[14088] | 472 | }
|
---|
[14699] | 473 | }
|
---|
| 474 | }
|
---|
[14088] | 475 |
|
---|
[14699] | 476 | public override bool SupportsPause { get { return false; } } // TODO (can we pause?)
|
---|
[14088] | 477 |
|
---|
[14699] | 478 | //evaluate the vector
|
---|
| 479 | public double Obj(RealVector x) {
|
---|
| 480 | evals = evals + 1;
|
---|
| 481 | if(Problem.Maximization.Value)
|
---|
| 482 | return -Problem.Evaluator.Evaluate(x);
|
---|
[14088] | 483 |
|
---|
[14699] | 484 | return Problem.Evaluator.Evaluate(x);
|
---|
| 485 | }
|
---|
[14088] | 486 |
|
---|
[14699] | 487 | // Get ith row from the matrix
|
---|
| 488 | public double[] getMatrixRow(double[,] Mat, int i) {
|
---|
| 489 | double[] tmp = new double[Mat.GetUpperBound(1) + 1];
|
---|
[14088] | 490 |
|
---|
[14699] | 491 | for(int j = 0; j <= Mat.GetUpperBound(1); j++) {
|
---|
| 492 | tmp[j] = Mat[i, j];
|
---|
| 493 | }
|
---|
[14088] | 494 |
|
---|
[14699] | 495 | return tmp;
|
---|
| 496 | }
|
---|
[14088] | 497 |
|
---|
[14699] | 498 | /*
|
---|
| 499 | Return random value from Cauchy distribution with mean "mu" and variance "gamma"
|
---|
| 500 | http://www.sat.t.u-tokyo.ac.jp/~omi/random_variables_generation.html#Cauchy
|
---|
| 501 | */
|
---|
| 502 | private double cauchy_g(double mu, double gamma) {
|
---|
| 503 | return mu + gamma * Math.Tan(Math.PI * (_random.NextDouble() - 0.5));
|
---|
| 504 | }
|
---|
[14088] | 505 |
|
---|
[14699] | 506 | /*
|
---|
| 507 | Return random value from normal distribution with mean "mu" and variance "gamma"
|
---|
| 508 | http://www.sat.t.u-tokyo.ac.jp/~omi/random_variables_generation.html#Gauss
|
---|
| 509 | */
|
---|
| 510 | private double gauss(double mu, double sigma) {
|
---|
| 511 | return mu + sigma * Math.Sqrt(-2.0 * Math.Log(_random.NextDouble())) * Math.Sin(2.0 * Math.PI * _random.NextDouble());
|
---|
| 512 | }
|
---|
[14088] | 513 |
|
---|
[14699] | 514 | private double[,] makeNewIndividuals() {
|
---|
| 515 | //problem variables
|
---|
| 516 | var dim = Problem.ProblemSize.Value;
|
---|
| 517 | var lb = Problem.Bounds[0, 0];
|
---|
| 518 | var ub = Problem.Bounds[0, 1];
|
---|
| 519 | var range = ub - lb;
|
---|
| 520 | double[,] population = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 521 |
|
---|
| 522 | //create initial population
|
---|
| 523 | //population is a matrix of size PopulationSize*ProblemSize
|
---|
| 524 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 525 | for(int j = 0; j < Problem.ProblemSize.Value; j++) {
|
---|
| 526 | population[i, j] = _random.NextDouble() * range + lb;
|
---|
[14088] | 527 | }
|
---|
[14699] | 528 | }
|
---|
| 529 | return population;
|
---|
| 530 | }
|
---|
[14088] | 531 |
|
---|
[14699] | 532 | private static void Quicksort(double[] elements, int left, int right, int[] index) {
|
---|
| 533 | int i = left, j = right;
|
---|
| 534 | double pivot = elements[(left + right) / 2];
|
---|
| 535 | double tmp_var = 0;
|
---|
| 536 | int tmp_index = 0;
|
---|
[14088] | 537 |
|
---|
[14699] | 538 | while(i <= j) {
|
---|
| 539 | while(elements[i].CompareTo(pivot) < 0) {
|
---|
| 540 | i++;
|
---|
| 541 | }
|
---|
[14088] | 542 |
|
---|
[14699] | 543 | while(elements[j].CompareTo(pivot) > 0) {
|
---|
| 544 | j--;
|
---|
| 545 | }
|
---|
[14088] | 546 |
|
---|
[14699] | 547 | if(i <= j) {
|
---|
| 548 | // Swap
|
---|
| 549 | tmp_var = elements[i];
|
---|
| 550 | elements[i] = elements[j];
|
---|
| 551 | elements[j] = tmp_var;
|
---|
[14088] | 552 |
|
---|
[14699] | 553 | tmp_index = index[i];
|
---|
| 554 | index[i] = index[j];
|
---|
| 555 | index[j] = tmp_index;
|
---|
[14088] | 556 |
|
---|
[14699] | 557 | i++;
|
---|
| 558 | j--;
|
---|
| 559 | }
|
---|
| 560 | }
|
---|
[14088] | 561 |
|
---|
[14699] | 562 | // Recursive calls
|
---|
| 563 | if(left < j) {
|
---|
| 564 | Quicksort(elements, left, j, index);
|
---|
| 565 | }
|
---|
[14088] | 566 |
|
---|
[14699] | 567 | if(i < right) {
|
---|
| 568 | Quicksort(elements, i, right, index);
|
---|
| 569 | }
|
---|
| 570 | }
|
---|
[14088] | 571 |
|
---|
[14699] | 572 | // current to best selection scheme with archive
|
---|
| 573 | // analyze how the archive is implemented
|
---|
| 574 | private double[,] operateCurrentToPBest1BinWithArchive(double[,] pop, double[,] children, int target, int p_best_individual, double scaling_factor, double cross_rate) {
|
---|
| 575 | int r1, r2;
|
---|
| 576 | int num_arc_inds = 0;
|
---|
| 577 | var lb = Problem.Bounds[0, 0];
|
---|
| 578 | var ub = Problem.Bounds[0, 1];
|
---|
[14088] | 579 |
|
---|
[14699] | 580 | do {
|
---|
| 581 | r1 = (int)(_random.NextDouble() * PopulationSizeParameter.Value.Value);
|
---|
| 582 | } while(r1 == target);
|
---|
| 583 | do {
|
---|
| 584 | r2 = (int)(_random.NextDouble() * (PopulationSizeParameter.Value.Value + num_arc_inds));
|
---|
| 585 | } while((r2 == target) || (r2 == r1));
|
---|
[14088] | 586 |
|
---|
[14699] | 587 | int random_variable = (int)(_random.NextDouble() * Problem.ProblemSize.Value);
|
---|
[14088] | 588 |
|
---|
[14699] | 589 | if(r2 >= PopulationSizeParameter.Value.Value) {
|
---|
| 590 | r2 -= PopulationSizeParameter.Value.Value;
|
---|
| 591 | for(int i = 0; i < Problem.ProblemSize.Value; i++) {
|
---|
| 592 | if((_random.NextDouble() < cross_rate) || (i == random_variable)) children[target, i] = pop[target, i] + scaling_factor * (pop[p_best_individual, i] - pop[target, i]) + scaling_factor * (pop[r1, i] - archive[r2, i]);
|
---|
| 593 | else children[target, i] = pop[target, i];
|
---|
| 594 | }
|
---|
| 595 | } else {
|
---|
| 596 | for(int i = 0; i < Problem.ProblemSize.Value; i++) {
|
---|
| 597 | if((_random.NextDouble() < cross_rate) || (i == random_variable)) children[target, i] = pop[target, i] + scaling_factor * (pop[p_best_individual, i] - pop[target, i]) + scaling_factor * (pop[r1, i] - pop[r2, i]);
|
---|
| 598 | else children[target, i] = pop[target, i];
|
---|
| 599 | }
|
---|
| 600 | }
|
---|
[14088] | 601 |
|
---|
[14699] | 602 | for(int i = 0; i < Problem.ProblemSize.Value; i++) {
|
---|
| 603 | if(children[target, i] < lb) children[target, i] = (lb + pop[target, i]) / 2.0;
|
---|
| 604 | else if(children[target, i] > ub) children[target, i] = (ub + pop[target, i]) / 2.0;
|
---|
| 605 | }
|
---|
[14088] | 606 |
|
---|
[14699] | 607 | return children;
|
---|
[14088] | 608 | }
|
---|
[14699] | 609 | }
|
---|
[14088] | 610 | }
|
---|