[14091] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * The implementation is inspired by the implementation in JAVA of SHADE algorithm https://sites.google.com/site/tanaberyoji/software/SHADE1.0.1_CEC2013.zip?attredirects=0&d=1
|
---|
| 8 | *
|
---|
| 9 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 10 | * it under the terms of the GNU General Public License as published by
|
---|
| 11 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 12 | * (at your option) any later version.
|
---|
| 13 | *
|
---|
| 14 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | * GNU General Public License for more details.
|
---|
| 18 | *
|
---|
| 19 | * You should have received a copy of the GNU General Public License
|
---|
| 20 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 21 | */
|
---|
| 22 | using HeuristicLab.Analysis;
|
---|
[14088] | 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.TestFunctions;
|
---|
| 31 | using HeuristicLab.Random;
|
---|
| 32 | using System;
|
---|
| 33 | using System.Collections.Generic;
|
---|
| 34 | using System.Threading;
|
---|
| 35 |
|
---|
| 36 | namespace HeuristicLab.Algorithms.Shade
|
---|
| 37 | {
|
---|
| 38 |
|
---|
| 39 | [Item("Success-History Based Parameter Adaptation for DE (SHADE)", "A self-adaptive version of differential evolution")]
|
---|
| 40 | [StorableClass]
|
---|
| 41 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)]
|
---|
| 42 | public class Shade : BasicAlgorithm
|
---|
| 43 | {
|
---|
| 44 | public Func<IEnumerable<double>, double> Evaluation;
|
---|
| 45 |
|
---|
| 46 | public override Type ProblemType
|
---|
| 47 | {
|
---|
| 48 | get { return typeof(SingleObjectiveTestFunctionProblem); }
|
---|
| 49 | }
|
---|
| 50 | public new SingleObjectiveTestFunctionProblem Problem
|
---|
| 51 | {
|
---|
| 52 | get { return (SingleObjectiveTestFunctionProblem)base.Problem; }
|
---|
| 53 | set { base.Problem = value; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | private readonly IRandom _random = new MersenneTwister();
|
---|
| 57 | private int evals;
|
---|
| 58 | private int pop_size;
|
---|
| 59 | private double arc_rate;
|
---|
| 60 | private int arc_size;
|
---|
| 61 | private double p_best_rate;
|
---|
| 62 | private int memory_size;
|
---|
| 63 |
|
---|
| 64 | private double[][] pop;
|
---|
| 65 | private double[] fitness;
|
---|
| 66 | private double[][] children;
|
---|
| 67 | private double[] children_fitness;
|
---|
| 68 |
|
---|
| 69 | private double[] bsf_solution;
|
---|
| 70 | private double bsf_fitness = 1e+30;
|
---|
| 71 | private double[,] archive;
|
---|
| 72 | private int num_arc_inds = 0;
|
---|
| 73 |
|
---|
| 74 | #region ParameterNames
|
---|
| 75 | private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
|
---|
| 76 | private const string SeedParameterName = "Seed";
|
---|
| 77 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 78 | private const string CrossoverProbabilityParameterName = "CrossoverProbability";
|
---|
| 79 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
| 80 | private const string ScalingFactorParameterName = "ScalingFactor";
|
---|
| 81 | private const string ValueToReachParameterName = "ValueToReach";
|
---|
| 82 | private const string ArchiveRateParameterName = "ArchiveRate";
|
---|
| 83 | private const string MemorySizeParameterName = "MemorySize";
|
---|
| 84 | private const string BestRateParameterName = "BestRate";
|
---|
| 85 | #endregion
|
---|
| 86 |
|
---|
| 87 | #region ParameterProperties
|
---|
| 88 | public IFixedValueParameter<IntValue> MaximumEvaluationsParameter
|
---|
| 89 | {
|
---|
| 90 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumEvaluationsParameterName]; }
|
---|
| 91 | }
|
---|
| 92 | public IFixedValueParameter<IntValue> SeedParameter
|
---|
| 93 | {
|
---|
| 94 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 95 | }
|
---|
| 96 | public FixedValueParameter<BoolValue> SetSeedRandomlyParameter
|
---|
| 97 | {
|
---|
| 98 | get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 99 | }
|
---|
| 100 | private ValueParameter<IntValue> PopulationSizeParameter
|
---|
| 101 | {
|
---|
| 102 | get { return (ValueParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
| 103 | }
|
---|
| 104 | public ValueParameter<DoubleValue> CrossoverProbabilityParameter
|
---|
| 105 | {
|
---|
| 106 | get { return (ValueParameter<DoubleValue>)Parameters[CrossoverProbabilityParameterName]; }
|
---|
| 107 | }
|
---|
| 108 | public ValueParameter<DoubleValue> ScalingFactorParameter
|
---|
| 109 | {
|
---|
| 110 | get { return (ValueParameter<DoubleValue>)Parameters[ScalingFactorParameterName]; }
|
---|
| 111 | }
|
---|
| 112 | public ValueParameter<DoubleValue> ValueToReachParameter
|
---|
| 113 | {
|
---|
| 114 | get { return (ValueParameter<DoubleValue>)Parameters[ValueToReachParameterName]; }
|
---|
| 115 | }
|
---|
| 116 | public ValueParameter<DoubleValue> ArchiveRateParameter
|
---|
| 117 | {
|
---|
| 118 | get { return (ValueParameter<DoubleValue>)Parameters[ArchiveRateParameterName]; }
|
---|
| 119 | }
|
---|
| 120 | public ValueParameter<IntValue> MemorySizeParameter
|
---|
| 121 | {
|
---|
| 122 | get { return (ValueParameter<IntValue>)Parameters[MemorySizeParameterName]; }
|
---|
| 123 | }
|
---|
| 124 | public ValueParameter<DoubleValue> BestRateParameter
|
---|
| 125 | {
|
---|
| 126 | get { return (ValueParameter<DoubleValue>)Parameters[BestRateParameterName]; }
|
---|
| 127 | }
|
---|
| 128 | #endregion
|
---|
| 129 |
|
---|
| 130 | #region Properties
|
---|
| 131 | public int MaximumEvaluations
|
---|
| 132 | {
|
---|
| 133 | get { return MaximumEvaluationsParameter.Value.Value; }
|
---|
| 134 | set { MaximumEvaluationsParameter.Value.Value = value; }
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | public Double CrossoverProbability
|
---|
| 138 | {
|
---|
| 139 | get { return CrossoverProbabilityParameter.Value.Value; }
|
---|
| 140 | set { CrossoverProbabilityParameter.Value.Value = value; }
|
---|
| 141 | }
|
---|
| 142 | public Double ScalingFactor
|
---|
| 143 | {
|
---|
| 144 | get { return ScalingFactorParameter.Value.Value; }
|
---|
| 145 | set { ScalingFactorParameter.Value.Value = value; }
|
---|
| 146 | }
|
---|
| 147 | public int Seed
|
---|
| 148 | {
|
---|
| 149 | get { return SeedParameter.Value.Value; }
|
---|
| 150 | set { SeedParameter.Value.Value = value; }
|
---|
| 151 | }
|
---|
| 152 | public bool SetSeedRandomly
|
---|
| 153 | {
|
---|
| 154 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 155 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 156 | }
|
---|
| 157 | public IntValue PopulationSize
|
---|
| 158 | {
|
---|
| 159 | get { return PopulationSizeParameter.Value; }
|
---|
| 160 | set { PopulationSizeParameter.Value = value; }
|
---|
| 161 | }
|
---|
| 162 | public Double ValueToReach
|
---|
| 163 | {
|
---|
| 164 | get { return ValueToReachParameter.Value.Value; }
|
---|
| 165 | set { ValueToReachParameter.Value.Value = value; }
|
---|
| 166 | }
|
---|
| 167 | public Double ArchiveRate
|
---|
| 168 | {
|
---|
| 169 | get { return ArchiveRateParameter.Value.Value; }
|
---|
| 170 | set { ArchiveRateParameter.Value.Value = value; }
|
---|
| 171 | }
|
---|
| 172 | public IntValue MemorySize
|
---|
| 173 | {
|
---|
| 174 | get { return MemorySizeParameter.Value; }
|
---|
| 175 | set { MemorySizeParameter.Value = value; }
|
---|
| 176 | }
|
---|
| 177 | public Double BestRate
|
---|
| 178 | {
|
---|
| 179 | get { return BestRateParameter.Value.Value; }
|
---|
| 180 | set { BestRateParameter.Value.Value = value; }
|
---|
| 181 | }
|
---|
| 182 | #endregion
|
---|
| 183 |
|
---|
| 184 | #region ResultsProperties
|
---|
| 185 | private double ResultsBestQuality
|
---|
| 186 | {
|
---|
| 187 | get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
|
---|
| 188 | set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | private double VTRBestQuality
|
---|
| 192 | {
|
---|
| 193 | get { return ((DoubleValue)Results["VTR"].Value).Value; }
|
---|
| 194 | set { ((DoubleValue)Results["VTR"].Value).Value = value; }
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | private RealVector ResultsBestSolution
|
---|
| 198 | {
|
---|
| 199 | get { return (RealVector)Results["Best Solution"].Value; }
|
---|
| 200 | set { Results["Best Solution"].Value = value; }
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | private int ResultsEvaluations
|
---|
| 204 | {
|
---|
| 205 | get { return ((IntValue)Results["Evaluations"].Value).Value; }
|
---|
| 206 | set { ((IntValue)Results["Evaluations"].Value).Value = value; }
|
---|
| 207 | }
|
---|
| 208 | private int ResultsIterations
|
---|
| 209 | {
|
---|
| 210 | get { return ((IntValue)Results["Iterations"].Value).Value; }
|
---|
| 211 | set { ((IntValue)Results["Iterations"].Value).Value = value; }
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | private DataTable ResultsQualities
|
---|
| 215 | {
|
---|
| 216 | get { return ((DataTable)Results["Qualities"].Value); }
|
---|
| 217 | }
|
---|
| 218 | private DataRow ResultsQualitiesBest
|
---|
| 219 | {
|
---|
| 220 | get { return ResultsQualities.Rows["Best Quality"]; }
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | #endregion
|
---|
| 224 |
|
---|
| 225 | [StorableConstructor]
|
---|
| 226 | protected Shade(bool deserializing) : base(deserializing) { }
|
---|
| 227 |
|
---|
| 228 | protected Shade(Shade original, Cloner cloner)
|
---|
| 229 | : base(original, cloner)
|
---|
| 230 | {
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | public override IDeepCloneable Clone(Cloner cloner)
|
---|
| 234 | {
|
---|
| 235 | return new Shade(this, cloner);
|
---|
| 236 | }
|
---|
| 237 |
|
---|
| 238 | public Shade()
|
---|
| 239 | {
|
---|
| 240 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue)));
|
---|
| 241 | Parameters.Add(new ValueParameter<IntValue>(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(75)));
|
---|
| 242 | Parameters.Add(new ValueParameter<DoubleValue>(ValueToReachParameterName, "Value to reach (VTR) parameter", new DoubleValue(0.00000001)));
|
---|
| 243 | Parameters.Add(new ValueParameter<DoubleValue>(ArchiveRateParameterName, "Archive rate parameter", new DoubleValue(2.0)));
|
---|
| 244 | Parameters.Add(new ValueParameter<IntValue>(MemorySizeParameterName, "Memory size parameter", new IntValue(0)));
|
---|
| 245 | Parameters.Add(new ValueParameter<DoubleValue>(BestRateParameterName, "Best rate parameter", new DoubleValue(0.1)));
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 | protected override void Run(CancellationToken cancellationToken)
|
---|
| 249 | {
|
---|
| 250 |
|
---|
| 251 | // Set up the results display
|
---|
| 252 | Results.Add(new Result("Iterations", new IntValue(0)));
|
---|
| 253 | Results.Add(new Result("Evaluations", new IntValue(0)));
|
---|
| 254 | Results.Add(new Result("Best Solution", new RealVector()));
|
---|
| 255 | Results.Add(new Result("Best Quality", new DoubleValue(double.NaN)));
|
---|
| 256 | Results.Add(new Result("VTR", new DoubleValue(double.NaN)));
|
---|
| 257 | var table = new DataTable("Qualities");
|
---|
| 258 | table.Rows.Add(new DataRow("Best Quality"));
|
---|
| 259 | Results.Add(new Result("Qualities", table));
|
---|
| 260 |
|
---|
| 261 |
|
---|
| 262 | this.evals = 0;
|
---|
| 263 | int archive_size = (int)Math.Round(ArchiveRateParameter.Value.Value * PopulationSize.Value);
|
---|
| 264 | int problem_size = Problem.ProblemSize.Value;
|
---|
| 265 |
|
---|
| 266 | int pop_size = PopulationSizeParameter.Value.Value;
|
---|
| 267 | this.arc_rate = ArchiveRateParameter.Value.Value;
|
---|
| 268 | this.arc_size = (int)Math.Round(this.arc_rate * pop_size);
|
---|
| 269 | this.p_best_rate = BestRateParameter.Value.Value;
|
---|
| 270 | this.memory_size = MemorySizeParameter.Value.Value;
|
---|
| 271 |
|
---|
| 272 | this.pop = new double[pop_size][];
|
---|
| 273 | this.fitness = new double[pop_size];
|
---|
| 274 | this.children = new double[pop_size][];
|
---|
| 275 | this.children_fitness = new double[pop_size];
|
---|
| 276 |
|
---|
| 277 | this.bsf_solution = new double[problem_size];
|
---|
| 278 | this.bsf_fitness = 1e+30;
|
---|
| 279 | this.archive = new double[arc_size, Problem.ProblemSize.Value];
|
---|
| 280 | this.num_arc_inds = 0;
|
---|
| 281 |
|
---|
| 282 | double[,] populationOld = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 283 | double[,] mutationPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 284 | double[,] trialPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 285 | double[] bestPopulation = new double[Problem.ProblemSize.Value];
|
---|
| 286 | double[] bestPopulationIteration = new double[Problem.ProblemSize.Value];
|
---|
| 287 | double[,] archive = new double[archive_size, Problem.ProblemSize.Value];
|
---|
| 288 |
|
---|
| 289 |
|
---|
| 290 | // //for external archive
|
---|
| 291 | int rand_arc_ind;
|
---|
| 292 |
|
---|
| 293 | int num_success_params;
|
---|
| 294 |
|
---|
| 295 | double[] success_sf = new double[PopulationSizeParameter.Value.Value];
|
---|
| 296 | double[] success_cr = new double[PopulationSizeParameter.Value.Value];
|
---|
| 297 | double[] dif_fitness = new double[PopulationSizeParameter.Value.Value];
|
---|
| 298 | double[] fitness = new double[PopulationSizeParameter.Value.Value];
|
---|
| 299 |
|
---|
| 300 | // the contents of M_f and M_cr are all initialiezed 0.5
|
---|
| 301 | double[] memory_sf = new double[MemorySizeParameter.Value.Value];
|
---|
| 302 | double[] memory_cr = new double[MemorySizeParameter.Value.Value];
|
---|
| 303 |
|
---|
| 304 | for (int i = 0; i < MemorySizeParameter.Value.Value; i++)
|
---|
| 305 | {
|
---|
| 306 | memory_sf[i] = 0.5;
|
---|
| 307 | memory_cr[i] = 0.5;
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | //memory index counter
|
---|
| 311 | int memory_pos = 0;
|
---|
| 312 | double temp_sum_sf1, temp_sum_sf2, temp_sum_cr1, temp_sum_cr2, temp_sum, temp_weight;
|
---|
| 313 |
|
---|
| 314 | //for new parameters sampling
|
---|
| 315 | double mu_sf, mu_cr;
|
---|
| 316 | int rand_mem_index;
|
---|
| 317 |
|
---|
| 318 | double[] pop_sf = new double[PopulationSizeParameter.Value.Value];
|
---|
| 319 | double[] pop_cr = new double[PopulationSizeParameter.Value.Value];
|
---|
| 320 |
|
---|
| 321 | //for current-to-pbest/1
|
---|
| 322 | int p_best_ind;
|
---|
| 323 | double m = PopulationSizeParameter.Value.Value * BestRateParameter.Value.Value;
|
---|
| 324 | int p_num = (int)Math.Round(m);
|
---|
| 325 | int[] sorted_array = new int[PopulationSizeParameter.Value.Value];
|
---|
| 326 | double[] sorted_fitness = new double[PopulationSizeParameter.Value.Value];
|
---|
| 327 |
|
---|
| 328 | //initialize the population
|
---|
| 329 | populationOld = makeNewIndividuals();
|
---|
| 330 |
|
---|
| 331 | //evaluate the best member after the intialiazation
|
---|
| 332 | //the idea is to select first member and after that to check the others members from the population
|
---|
| 333 |
|
---|
| 334 | int best_index = 0;
|
---|
| 335 | double[] populationRow = new double[Problem.ProblemSize.Value];
|
---|
| 336 | bestPopulation = getMatrixRow(populationOld, best_index);
|
---|
| 337 | RealVector bestPopulationVector = new RealVector(bestPopulation);
|
---|
| 338 | double bestPopulationValue = Obj(bestPopulationVector);
|
---|
| 339 | fitness[best_index] = bestPopulationValue;
|
---|
| 340 | RealVector selectionVector;
|
---|
| 341 | RealVector trialVector;
|
---|
| 342 | double qtrial;
|
---|
| 343 |
|
---|
| 344 |
|
---|
| 345 | for (var i = 0; i < PopulationSizeParameter.Value.Value; i++)
|
---|
| 346 | {
|
---|
| 347 | populationRow = getMatrixRow(populationOld, i);
|
---|
| 348 | trialVector = new RealVector(populationRow);
|
---|
| 349 |
|
---|
| 350 | qtrial = Obj(trialVector);
|
---|
| 351 | fitness[i] = qtrial;
|
---|
| 352 |
|
---|
| 353 | if (qtrial > bestPopulationValue)
|
---|
| 354 | {
|
---|
| 355 | bestPopulationVector = new RealVector(populationRow);
|
---|
| 356 | bestPopulationValue = qtrial;
|
---|
| 357 | best_index = i;
|
---|
| 358 | }
|
---|
| 359 | }
|
---|
| 360 |
|
---|
| 361 | int iterations = 1;
|
---|
| 362 |
|
---|
| 363 | // Loop until iteration limit reached or canceled.
|
---|
| 364 | // todo replace with a function
|
---|
| 365 | // && bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value
|
---|
| 366 | while (ResultsEvaluations < MaximumEvaluations
|
---|
| 367 | && !cancellationToken.IsCancellationRequested &&
|
---|
| 368 | bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value)
|
---|
| 369 | {
|
---|
| 370 | for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) sorted_array[i] = i;
|
---|
| 371 | for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) sorted_fitness[i] = fitness[i];
|
---|
| 372 |
|
---|
| 373 | Quicksort(sorted_fitness, 0, PopulationSizeParameter.Value.Value - 1, sorted_array);
|
---|
| 374 |
|
---|
| 375 | for (int target = 0; target < PopulationSizeParameter.Value.Value; target++)
|
---|
| 376 | {
|
---|
| 377 | rand_mem_index = (int)(_random.NextDouble() * MemorySizeParameter.Value.Value);
|
---|
| 378 | mu_sf = memory_sf[rand_mem_index];
|
---|
| 379 | mu_cr = memory_cr[rand_mem_index];
|
---|
| 380 |
|
---|
| 381 | //generate CR_i and repair its value
|
---|
| 382 | if (mu_cr == -1)
|
---|
| 383 | {
|
---|
| 384 | pop_cr[target] = 0;
|
---|
| 385 | }
|
---|
| 386 | else {
|
---|
| 387 | pop_cr[target] = gauss(mu_cr, 0.1);
|
---|
| 388 | if (pop_cr[target] > 1) pop_cr[target] = 1;
|
---|
| 389 | else if (pop_cr[target] < 0) pop_cr[target] = 0;
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 | //generate F_i and repair its value
|
---|
| 393 | do {
|
---|
| 394 | pop_sf[target] = cauchy_g(mu_sf, 0.1);
|
---|
| 395 | } while (pop_sf[target] <= 0);
|
---|
| 396 |
|
---|
| 397 | if (pop_sf[target] > 1) pop_sf[target] = 1;
|
---|
| 398 |
|
---|
| 399 | //p-best individual is randomly selected from the top pop_size * p_i members
|
---|
| 400 | p_best_ind = sorted_array[(int)(_random.NextDouble() * p_num)];
|
---|
| 401 |
|
---|
| 402 | trialPopulation = operateCurrentToPBest1BinWithArchive(populationOld, trialPopulation, target, p_best_ind, pop_sf[target], pop_cr[target]);
|
---|
| 403 | }
|
---|
| 404 |
|
---|
| 405 | for (int i = 0; i < pop_size; i++) {
|
---|
| 406 | trialVector = new RealVector(getMatrixRow(trialPopulation, i));
|
---|
| 407 | children_fitness[i] = Obj(trialVector);
|
---|
| 408 | }
|
---|
| 409 |
|
---|
| 410 | //update bfs solution
|
---|
| 411 | for (var i = 0; i < PopulationSizeParameter.Value.Value; i++)
|
---|
| 412 | {
|
---|
| 413 | populationRow = getMatrixRow(populationOld, i);
|
---|
| 414 | qtrial = fitness[i];
|
---|
| 415 |
|
---|
| 416 | if (qtrial > bestPopulationValue)
|
---|
| 417 | {
|
---|
| 418 | bestPopulationVector = new RealVector(populationRow);
|
---|
| 419 | bestPopulationValue = qtrial;
|
---|
| 420 | best_index = i;
|
---|
| 421 | }
|
---|
| 422 | }
|
---|
| 423 |
|
---|
| 424 | num_success_params = 0;
|
---|
| 425 |
|
---|
| 426 | //generation alternation
|
---|
| 427 | for (int i = 0; i < pop_size; i++)
|
---|
| 428 | {
|
---|
| 429 | if (children_fitness[i] == fitness[i])
|
---|
| 430 | {
|
---|
| 431 | fitness[i] = children_fitness[i];
|
---|
| 432 | for (int j = 0; j < problem_size; j++) populationOld[i,j] = trialPopulation[i,j];
|
---|
| 433 | }
|
---|
| 434 | else if (children_fitness[i] < fitness[i])
|
---|
| 435 | {
|
---|
| 436 | //parent vectors x_i which were worse than the trial vectors u_i are preserved
|
---|
| 437 | if (arc_size > 1)
|
---|
| 438 | {
|
---|
| 439 | if (num_arc_inds < arc_size)
|
---|
| 440 | {
|
---|
| 441 | for (int j = 0; j < problem_size; j++) this.archive[num_arc_inds, j] = populationOld[i, j];
|
---|
| 442 | num_arc_inds++;
|
---|
| 443 |
|
---|
| 444 | }
|
---|
| 445 | //Whenever the size of the archive exceeds, randomly selected elements are deleted to make space for the newly inserted elements
|
---|
| 446 | else {
|
---|
| 447 | rand_arc_ind = (int)(_random.NextDouble() * arc_size);
|
---|
| 448 | for (int j = 0; j < problem_size; j++) this.archive[rand_arc_ind, j] = populationOld[i, j];
|
---|
| 449 | }
|
---|
| 450 | }
|
---|
| 451 |
|
---|
| 452 | dif_fitness[num_success_params] = Math.Abs(fitness[i] - children_fitness[i]);
|
---|
| 453 |
|
---|
| 454 | fitness[i] = children_fitness[i];
|
---|
| 455 | for (int j = 0; j < problem_size; j++) populationOld[i, j] = trialPopulation[i, j];
|
---|
| 456 |
|
---|
| 457 | //successful parameters are preserved in S_F and S_CR
|
---|
| 458 | success_sf[num_success_params] = pop_sf[i];
|
---|
| 459 | success_cr[num_success_params] = pop_cr[i];
|
---|
| 460 | num_success_params++;
|
---|
| 461 | }
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | if (num_success_params > 0)
|
---|
| 465 | {
|
---|
| 466 | temp_sum_sf1 = 0;
|
---|
| 467 | temp_sum_sf2 = 0;
|
---|
| 468 | temp_sum_cr1 = 0;
|
---|
| 469 | temp_sum_cr2 = 0;
|
---|
| 470 | temp_sum = 0;
|
---|
| 471 | temp_weight = 0;
|
---|
| 472 |
|
---|
| 473 | for (int i = 0; i < num_success_params; i++) temp_sum += dif_fitness[i];
|
---|
| 474 |
|
---|
| 475 | //weighted lehmer mean
|
---|
| 476 | for (int i = 0; i < num_success_params; i++)
|
---|
| 477 | {
|
---|
| 478 | temp_weight = dif_fitness[i] / temp_sum;
|
---|
| 479 |
|
---|
| 480 | temp_sum_sf1 += temp_weight * success_sf[i] * success_sf[i];
|
---|
| 481 | temp_sum_sf2 += temp_weight * success_sf[i];
|
---|
| 482 |
|
---|
| 483 | temp_sum_cr1 += temp_weight * success_cr[i] * success_cr[i];
|
---|
| 484 | temp_sum_cr2 += temp_weight * success_cr[i];
|
---|
| 485 | }
|
---|
| 486 |
|
---|
| 487 | memory_sf[memory_pos] = temp_sum_sf1 / temp_sum_sf2;
|
---|
| 488 |
|
---|
| 489 | if (temp_sum_cr2 == 0 || memory_cr[memory_pos] == -1)
|
---|
| 490 | {
|
---|
| 491 | memory_cr[memory_pos] = -1;
|
---|
| 492 | } else {
|
---|
| 493 | memory_cr[memory_pos] = temp_sum_cr1 / temp_sum_cr2;
|
---|
| 494 | }
|
---|
| 495 |
|
---|
| 496 | //increment the counter
|
---|
| 497 | memory_pos++;
|
---|
| 498 | if (memory_pos >= memory_size) memory_pos = 0;
|
---|
| 499 | }
|
---|
| 500 |
|
---|
| 501 | //update the best candidate
|
---|
| 502 | for (int i = 0; i < PopulationSizeParameter.Value.Value; i++)
|
---|
| 503 | {
|
---|
| 504 | selectionVector = new RealVector(getMatrixRow(populationOld, i));
|
---|
| 505 | var quality = fitness[i];
|
---|
| 506 | if (quality < bestPopulationValue)
|
---|
| 507 | {
|
---|
| 508 | bestPopulationVector = (RealVector)selectionVector.Clone();
|
---|
| 509 | bestPopulationValue = quality;
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 |
|
---|
| 513 | iterations = iterations + 1;
|
---|
| 514 |
|
---|
| 515 | //update the results
|
---|
| 516 | ResultsEvaluations = evals;
|
---|
| 517 | ResultsIterations = iterations;
|
---|
| 518 | ResultsBestSolution = bestPopulationVector;
|
---|
| 519 | ResultsBestQuality = bestPopulationValue;
|
---|
| 520 |
|
---|
| 521 | //update the results in view
|
---|
| 522 | if (iterations % 10 == 0) ResultsQualitiesBest.Values.Add(bestPopulationValue);
|
---|
| 523 | if (bestPopulationValue < Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value)
|
---|
| 524 | {
|
---|
| 525 | VTRBestQuality = bestPopulationValue;
|
---|
| 526 | }
|
---|
| 527 | }
|
---|
| 528 | }
|
---|
| 529 |
|
---|
| 530 | //evaluate the vector
|
---|
| 531 | public double Obj(RealVector x)
|
---|
| 532 | {
|
---|
| 533 | evals = evals + 1;
|
---|
| 534 | if (Problem.Maximization.Value)
|
---|
| 535 | return -Problem.Evaluator.Evaluate(x);
|
---|
| 536 |
|
---|
| 537 | return Problem.Evaluator.Evaluate(x);
|
---|
| 538 | }
|
---|
| 539 |
|
---|
| 540 | // Get ith row from the matrix
|
---|
| 541 | public double[] getMatrixRow(double[,] Mat, int i)
|
---|
| 542 | {
|
---|
| 543 | double[] tmp = new double[Mat.GetUpperBound(1) + 1];
|
---|
| 544 |
|
---|
| 545 | for (int j = 0; j <= Mat.GetUpperBound(1); j++)
|
---|
| 546 | {
|
---|
| 547 | tmp[j] = Mat[i, j];
|
---|
| 548 | }
|
---|
| 549 |
|
---|
| 550 | return tmp;
|
---|
| 551 | }
|
---|
| 552 |
|
---|
| 553 | /*
|
---|
| 554 | Return random value from Cauchy distribution with mean "mu" and variance "gamma"
|
---|
| 555 | http://www.sat.t.u-tokyo.ac.jp/~omi/random_variables_generation.html#Cauchy
|
---|
| 556 | */
|
---|
| 557 | private double cauchy_g(double mu, double gamma)
|
---|
| 558 | {
|
---|
| 559 | return mu + gamma * Math.Tan(Math.PI * (_random.NextDouble() - 0.5));
|
---|
| 560 | }
|
---|
| 561 |
|
---|
| 562 | /*
|
---|
| 563 | Return random value from normal distribution with mean "mu" and variance "gamma"
|
---|
| 564 | http://www.sat.t.u-tokyo.ac.jp/~omi/random_variables_generation.html#Gauss
|
---|
| 565 | */
|
---|
| 566 | private double gauss(double mu, double sigma)
|
---|
| 567 | {
|
---|
| 568 | return mu + sigma * Math.Sqrt(-2.0 * Math.Log(_random.NextDouble())) * Math.Sin(2.0 * Math.PI * _random.NextDouble());
|
---|
| 569 | }
|
---|
| 570 |
|
---|
| 571 | private double[,] makeNewIndividuals() {
|
---|
| 572 | //problem variables
|
---|
| 573 | var dim = Problem.ProblemSize.Value;
|
---|
| 574 | var lb = Problem.Bounds[0, 0];
|
---|
| 575 | var ub = Problem.Bounds[0, 1];
|
---|
| 576 | var range = ub - lb;
|
---|
| 577 | double[,] population = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 578 |
|
---|
| 579 | //create initial population
|
---|
| 580 | //population is a matrix of size PopulationSize*ProblemSize
|
---|
| 581 | for (int i = 0; i < PopulationSizeParameter.Value.Value; i++)
|
---|
| 582 | {
|
---|
| 583 | for (int j = 0; j < Problem.ProblemSize.Value; j++)
|
---|
| 584 | {
|
---|
| 585 | population[i, j] = _random.NextDouble() * range + lb;
|
---|
| 586 | }
|
---|
| 587 | }
|
---|
| 588 | return population;
|
---|
| 589 | }
|
---|
| 590 |
|
---|
| 591 | private static void Quicksort(double[] elements, int left, int right, int[] index)
|
---|
| 592 | {
|
---|
| 593 | int i = left, j = right;
|
---|
| 594 | double pivot = elements[(left + right) / 2];
|
---|
| 595 | double tmp_var = 0;
|
---|
| 596 | int tmp_index = 0;
|
---|
| 597 |
|
---|
| 598 | while (i <= j)
|
---|
| 599 | {
|
---|
| 600 | while (elements[i].CompareTo(pivot) < 0)
|
---|
| 601 | {
|
---|
| 602 | i++;
|
---|
| 603 | }
|
---|
| 604 |
|
---|
| 605 | while (elements[j].CompareTo(pivot) > 0)
|
---|
| 606 | {
|
---|
| 607 | j--;
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 | if (i <= j)
|
---|
| 611 | {
|
---|
| 612 | // Swap
|
---|
| 613 | tmp_var = elements[i];
|
---|
| 614 | elements[i] = elements[j];
|
---|
| 615 | elements[j] = tmp_var;
|
---|
| 616 |
|
---|
| 617 | tmp_index = index[i];
|
---|
| 618 | index[i] = index[j];
|
---|
| 619 | index[j] = tmp_index;
|
---|
| 620 |
|
---|
| 621 | i++;
|
---|
| 622 | j--;
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | // Recursive calls
|
---|
| 627 | if (left < j)
|
---|
| 628 | {
|
---|
| 629 | Quicksort(elements, left, j, index);
|
---|
| 630 | }
|
---|
| 631 |
|
---|
| 632 | if (i < right)
|
---|
| 633 | {
|
---|
| 634 | Quicksort(elements, i, right, index);
|
---|
| 635 | }
|
---|
| 636 | }
|
---|
| 637 |
|
---|
| 638 | // current to best selection scheme with archive
|
---|
| 639 | // analyze how the archive is implemented
|
---|
| 640 | private double[,] operateCurrentToPBest1BinWithArchive(double[,] pop, double[,]children, int target, int p_best_individual, double scaling_factor, double cross_rate)
|
---|
| 641 | {
|
---|
| 642 | int r1, r2;
|
---|
| 643 | int num_arc_inds = 0;
|
---|
| 644 | var lb = Problem.Bounds[0, 0];
|
---|
| 645 | var ub = Problem.Bounds[0, 1];
|
---|
| 646 |
|
---|
| 647 | do
|
---|
| 648 | {
|
---|
| 649 | r1 = (int)(_random.NextDouble() * PopulationSizeParameter.Value.Value);
|
---|
| 650 | } while (r1 == target);
|
---|
| 651 | do
|
---|
| 652 | {
|
---|
| 653 | r2 = (int)(_random.NextDouble() * (PopulationSizeParameter.Value.Value + num_arc_inds));
|
---|
| 654 | } while ((r2 == target) || (r2 == r1));
|
---|
| 655 |
|
---|
| 656 | int random_variable = (int)(_random.NextDouble() * Problem.ProblemSize.Value);
|
---|
| 657 |
|
---|
| 658 | if (r2 >= PopulationSizeParameter.Value.Value)
|
---|
| 659 | {
|
---|
| 660 | r2 -= PopulationSizeParameter.Value.Value;
|
---|
| 661 | for (int i = 0; i < Problem.ProblemSize.Value; i++)
|
---|
| 662 | {
|
---|
| 663 | if ((_random.NextDouble() < cross_rate) || (i == random_variable)) children[target, i] = pop[target, i] + scaling_factor * (pop[p_best_individual, i] - pop[target, i]) + scaling_factor * (pop[r1, i] - archive[r2, i]);
|
---|
| 664 | else children[target, i] = pop[target, i];
|
---|
| 665 | }
|
---|
| 666 | }
|
---|
| 667 | else {
|
---|
| 668 | for (int i = 0; i < Problem.ProblemSize.Value; i++)
|
---|
| 669 | {
|
---|
| 670 | if ((_random.NextDouble() < cross_rate) || (i == random_variable)) children[target, i] = pop[target, i] + scaling_factor * (pop[p_best_individual, i] - pop[target, i]) + scaling_factor * (pop[r1, i] - pop[r2, i]);
|
---|
| 671 | else children[target, i] = pop[target, i];
|
---|
| 672 | }
|
---|
| 673 | }
|
---|
| 674 |
|
---|
| 675 | for (int i = 0; i < Problem.ProblemSize.Value; i++) {
|
---|
| 676 | if (children[target, i] < lb) children[target, i] = (lb + pop[target, i]) / 2.0;
|
---|
| 677 | else if (children[target, i] > ub) children[target, i] = (ub + pop[target, i]) / 2.0;
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 | return children;
|
---|
| 681 | }
|
---|
| 682 | }
|
---|
| 683 | }
|
---|