1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using HeuristicLab.Analysis;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
30 | using HeuristicLab.Operators;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Optimization.Operators;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.PluginInfrastructure;
|
---|
36 | using HeuristicLab.Problems.MultiObjectiveTestFunctions;
|
---|
37 | using HeuristicLab.Random;
|
---|
38 | using System.Threading;
|
---|
39 | using HeuristicLab.Algorithms.GDE3;
|
---|
40 |
|
---|
41 | namespace HeuristicLab.Algoritms.GDE3
|
---|
42 | {
|
---|
43 |
|
---|
44 | [Item("Generalized Differential Evolution (GDE3)", "A generalized differential evolution algorithm.")]
|
---|
45 | [StorableClass]
|
---|
46 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)]
|
---|
47 | public class GDE3 : BasicAlgorithm
|
---|
48 | {
|
---|
49 | public override Type ProblemType
|
---|
50 | {
|
---|
51 | get { return typeof(MultiObjectiveTestFunctionProblem); }
|
---|
52 | }
|
---|
53 | public new MultiObjectiveTestFunctionProblem Problem
|
---|
54 | {
|
---|
55 | get { return (MultiObjectiveTestFunctionProblem)base.Problem; }
|
---|
56 | set { base.Problem = value; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public ILookupParameter<DoubleMatrix> BestKnownFrontParameter
|
---|
60 | {
|
---|
61 | get
|
---|
62 | {
|
---|
63 | return (ILookupParameter<DoubleMatrix>)Parameters["BestKnownFront"];
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | private readonly IRandom _random = new MersenneTwister();
|
---|
68 | private int evals;
|
---|
69 | private double IGDSumm;
|
---|
70 |
|
---|
71 | #region ParameterNames
|
---|
72 | private const string MaximumGenerationsParameterName = "Maximum Generations";
|
---|
73 | private const string CrossoverProbabilityParameterName = "CrossoverProbability";
|
---|
74 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
75 | private const string ScalingFactorParameterName = "ScalingFactor";
|
---|
76 |
|
---|
77 | #endregion
|
---|
78 |
|
---|
79 | #region ParameterProperties
|
---|
80 | public IFixedValueParameter<IntValue> MaximumGenerationsParameter
|
---|
81 | {
|
---|
82 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumGenerationsParameterName]; }
|
---|
83 | }
|
---|
84 | private ValueParameter<IntValue> PopulationSizeParameter
|
---|
85 | {
|
---|
86 | get { return (ValueParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
87 | }
|
---|
88 | public ValueParameter<DoubleValue> CrossoverProbabilityParameter
|
---|
89 | {
|
---|
90 | get { return (ValueParameter<DoubleValue>)Parameters[CrossoverProbabilityParameterName]; }
|
---|
91 | }
|
---|
92 | public ValueParameter<DoubleValue> ScalingFactorParameter
|
---|
93 | {
|
---|
94 | get { return (ValueParameter<DoubleValue>)Parameters[ScalingFactorParameterName]; }
|
---|
95 | }
|
---|
96 | #endregion
|
---|
97 |
|
---|
98 | #region Properties
|
---|
99 | public int MaximumEvaluations
|
---|
100 | {
|
---|
101 | get { return MaximumGenerationsParameter.Value.Value; }
|
---|
102 | set { MaximumGenerationsParameter.Value.Value = value; }
|
---|
103 | }
|
---|
104 |
|
---|
105 | public Double CrossoverProbability
|
---|
106 | {
|
---|
107 | get { return CrossoverProbabilityParameter.Value.Value; }
|
---|
108 | set { CrossoverProbabilityParameter.Value.Value = value; }
|
---|
109 | }
|
---|
110 | public Double ScalingFactor
|
---|
111 | {
|
---|
112 | get { return ScalingFactorParameter.Value.Value; }
|
---|
113 | set { ScalingFactorParameter.Value.Value = value; }
|
---|
114 | }
|
---|
115 | public IntValue PopulationSize
|
---|
116 | {
|
---|
117 | get { return PopulationSizeParameter.Value; }
|
---|
118 | set { PopulationSizeParameter.Value = value; }
|
---|
119 | }
|
---|
120 | #endregion
|
---|
121 |
|
---|
122 | #region ResultsProperties
|
---|
123 | private double ResultsBestQuality
|
---|
124 | {
|
---|
125 | get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
|
---|
126 | set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
|
---|
127 | }
|
---|
128 |
|
---|
129 | private double ResultsIGDMean
|
---|
130 | {
|
---|
131 | get { return ((DoubleValue)Results["IGDMeanValue"].Value).Value; }
|
---|
132 | set { ((DoubleValue)Results["IGDMeanValue"].Value).Value = value; }
|
---|
133 | }
|
---|
134 |
|
---|
135 | private double ResultsIGDBest
|
---|
136 | {
|
---|
137 | get { return ((DoubleValue)Results["IGDBestValue"].Value).Value; }
|
---|
138 | set { ((DoubleValue)Results["IGDBestValue"].Value).Value = value; }
|
---|
139 | }
|
---|
140 |
|
---|
141 | private double ResultsIGDWorst
|
---|
142 | {
|
---|
143 | get { return ((DoubleValue)Results["IGDWorstValue"].Value).Value; }
|
---|
144 | set { ((DoubleValue)Results["IGDWorstValue"].Value).Value = value; }
|
---|
145 | }
|
---|
146 |
|
---|
147 | private double ResultsInvertedGenerationalDistance
|
---|
148 | {
|
---|
149 | get { return ((DoubleValue)Results["InvertedGenerationalDistance"].Value).Value; }
|
---|
150 | set { ((DoubleValue)Results["InvertedGenerationalDistance"].Value).Value = value; }
|
---|
151 | }
|
---|
152 |
|
---|
153 | private double ResultsHypervolume
|
---|
154 | {
|
---|
155 | get { return ((DoubleValue)Results["HyperVolumeValue"].Value).Value; }
|
---|
156 | set { ((DoubleValue)Results["HyperVolumeValue"].Value).Value = value; }
|
---|
157 | }
|
---|
158 |
|
---|
159 | private DoubleMatrix ResultsBestFront
|
---|
160 | {
|
---|
161 | get { return (DoubleMatrix)Results["Best Front"].Value; }
|
---|
162 | set { Results["Best Front"].Value = value; }
|
---|
163 | }
|
---|
164 |
|
---|
165 | private int ResultsEvaluations
|
---|
166 | {
|
---|
167 | get { return ((IntValue)Results["Evaluations"].Value).Value; }
|
---|
168 | set { ((IntValue)Results["Evaluations"].Value).Value = value; }
|
---|
169 | }
|
---|
170 | private int ResultsGenerations
|
---|
171 | {
|
---|
172 | get { return ((IntValue)Results["Generations"].Value).Value; }
|
---|
173 | set { ((IntValue)Results["Generations"].Value).Value = value; }
|
---|
174 | }
|
---|
175 | private double ResultsGenerationalDistance
|
---|
176 | {
|
---|
177 | get { return ((DoubleValue)Results["GenerationalDistance"].Value).Value; }
|
---|
178 | set { ((DoubleValue)Results["GenerationalDistance"].Value).Value = value; }
|
---|
179 | }
|
---|
180 |
|
---|
181 | private double ResultsSpacing
|
---|
182 | {
|
---|
183 | get { return ((DoubleValue)Results["Spacing"].Value).Value; }
|
---|
184 | set { ((DoubleValue)Results["Spacing"].Value).Value = value; }
|
---|
185 | }
|
---|
186 |
|
---|
187 | private double ResultsCrowding
|
---|
188 | {
|
---|
189 | get { return ((DoubleValue)Results["Crowding"].Value).Value; }
|
---|
190 | set { ((DoubleValue)Results["Crowding"].Value).Value = value; }
|
---|
191 | }
|
---|
192 |
|
---|
193 | #endregion
|
---|
194 |
|
---|
195 | [StorableConstructor]
|
---|
196 | protected GDE3(bool deserializing) : base(deserializing) { }
|
---|
197 |
|
---|
198 | protected GDE3(GDE3 original, Cloner cloner)
|
---|
199 | : base(original, cloner)
|
---|
200 | {
|
---|
201 | }
|
---|
202 |
|
---|
203 | public override IDeepCloneable Clone(Cloner cloner)
|
---|
204 | {
|
---|
205 | return new GDE3(this, cloner);
|
---|
206 | }
|
---|
207 |
|
---|
208 | public GDE3()
|
---|
209 | {
|
---|
210 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumGenerationsParameterName, "", new IntValue(1000)));
|
---|
211 | Parameters.Add(new ValueParameter<IntValue>(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(100)));
|
---|
212 | Parameters.Add(new ValueParameter<DoubleValue>(CrossoverProbabilityParameterName, "The value for crossover rate", new DoubleValue(0.5)));
|
---|
213 | Parameters.Add(new ValueParameter<DoubleValue>(ScalingFactorParameterName, "The value for scaling factor", new DoubleValue(0.5)));
|
---|
214 | Parameters.Add(new LookupParameter<DoubleMatrix>("BestKnownFront", "The currently best known Pareto front"));
|
---|
215 | }
|
---|
216 |
|
---|
217 | protected override void Run(CancellationToken cancellationToken)
|
---|
218 | {
|
---|
219 | // Set up the results display
|
---|
220 | Results.Add(new Result("Generations", new IntValue(0)));
|
---|
221 | Results.Add(new Result("Evaluations", new IntValue(0)));
|
---|
222 | Results.Add(new Result("Best Front", new DoubleMatrix()));
|
---|
223 | Results.Add(new Result("Crowding", new DoubleValue(0)));
|
---|
224 | Results.Add(new Result("InvertedGenerationalDistance", new DoubleValue(0)));
|
---|
225 | Results.Add(new Result("GenerationalDistance", new DoubleValue(0)));
|
---|
226 | Results.Add(new Result("HyperVolumeValue", new DoubleValue(0)));
|
---|
227 | Results.Add(new Result("IGDMeanValue", new DoubleValue(0)));
|
---|
228 | Results.Add(new Result("IGDBestValue", new DoubleValue(Int32.MaxValue)));
|
---|
229 | Results.Add(new Result("IGDWorstValue", new DoubleValue(0)));
|
---|
230 |
|
---|
231 | Results.Add(new Result("Spacing", new DoubleValue(0)));
|
---|
232 | Results.Add(new Result("Scatterplot", typeof(IMOFrontModel)));
|
---|
233 | var table = new DataTable("Qualities");
|
---|
234 | table.Rows.Add(new DataRow("Best Quality"));
|
---|
235 | Results.Add(new Result("Qualities", table));
|
---|
236 |
|
---|
237 | //setup the variables
|
---|
238 | List<SolutionSet> population;
|
---|
239 | List<SolutionSet> offspringPopulation;
|
---|
240 | SolutionSet[] parent;
|
---|
241 | double IGDSumm = 0;
|
---|
242 |
|
---|
243 | //initialize population
|
---|
244 | population = new List<SolutionSet>(PopulationSizeParameter.Value.Value);
|
---|
245 |
|
---|
246 | for (int i = 0; i < PopulationSizeParameter.Value.Value; ++i)
|
---|
247 | {
|
---|
248 | var m = createIndividual();
|
---|
249 | m.Quality = Problem.Evaluate(m.Population, _random);
|
---|
250 | //the test function is constrained
|
---|
251 | if (m.Quality.Length > Problem.Objectives)
|
---|
252 | {
|
---|
253 | m.OverallConstrainViolation = m.Quality[Problem.Objectives];
|
---|
254 | } else {
|
---|
255 | m.OverallConstrainViolation = 0;
|
---|
256 | }
|
---|
257 | population.Add(m);
|
---|
258 | }
|
---|
259 |
|
---|
260 | this.initProgress();
|
---|
261 | int generations = 1;
|
---|
262 |
|
---|
263 | while (ResultsGenerations < MaximumGenerationsParameter.Value.Value
|
---|
264 | && !cancellationToken.IsCancellationRequested)
|
---|
265 | {
|
---|
266 | var populationSize = PopulationSizeParameter.Value.Value;
|
---|
267 |
|
---|
268 | // Create the offSpring solutionSet
|
---|
269 | offspringPopulation = new List<SolutionSet>(PopulationSizeParameter.Value.Value * 2);
|
---|
270 |
|
---|
271 | for (int i = 0; i < populationSize; i++)
|
---|
272 | {
|
---|
273 | // Obtain parents. Two parameters are required: the population and the
|
---|
274 | // index of the current individual
|
---|
275 | parent = selection(population, i);
|
---|
276 |
|
---|
277 | SolutionSet child;
|
---|
278 | // Crossover. The parameters are the current individual and the index of the array of parents
|
---|
279 | child = reproduction(population[i], parent);
|
---|
280 |
|
---|
281 | child.Quality = Problem.Evaluate(child.Population, _random);
|
---|
282 |
|
---|
283 | this.updateProgres();
|
---|
284 |
|
---|
285 | //the test function is constrained
|
---|
286 | if (child.Quality.Length > Problem.Objectives)
|
---|
287 | {
|
---|
288 | child.OverallConstrainViolation = child.Quality[Problem.Objectives];
|
---|
289 | } else {
|
---|
290 | child.OverallConstrainViolation = 0;
|
---|
291 | }
|
---|
292 |
|
---|
293 | // Dominance test
|
---|
294 | int result;
|
---|
295 | result = compareDomination(population[i], child);
|
---|
296 |
|
---|
297 | if (result == -1)
|
---|
298 | { // Solution i dominates child
|
---|
299 | offspringPopulation.Add(population[i]);
|
---|
300 | }
|
---|
301 | else if (result == 1)
|
---|
302 | { // child dominates
|
---|
303 | offspringPopulation.Add(child);
|
---|
304 | }
|
---|
305 | else
|
---|
306 | { // the two solutions are non-dominated
|
---|
307 | offspringPopulation.Add(child);
|
---|
308 | offspringPopulation.Add(population[i]);
|
---|
309 | }
|
---|
310 | }
|
---|
311 |
|
---|
312 | // Ranking the offspring population
|
---|
313 | List<SolutionSet>[] ranking = computeRanking(offspringPopulation);
|
---|
314 | population = crowdingDistanceSelection(ranking);
|
---|
315 | generations++;
|
---|
316 | ResultsGenerations = generations;
|
---|
317 | displayResults(population);
|
---|
318 | }
|
---|
319 | }
|
---|
320 |
|
---|
321 | private void displayResults(List<SolutionSet> population)
|
---|
322 | {
|
---|
323 | List<SolutionSet>[] rankingFinal = computeRanking(population);
|
---|
324 |
|
---|
325 | int objectives = Problem.Objectives;
|
---|
326 | var optimalfront = Problem.TestFunction.OptimalParetoFront(objectives);
|
---|
327 |
|
---|
328 | double[][] opf = new double[0][];
|
---|
329 | if (optimalfront != null)
|
---|
330 | {
|
---|
331 | opf = optimalfront.Select(s => s.ToArray()).ToArray();
|
---|
332 | }
|
---|
333 |
|
---|
334 | //compute the final qualities and population
|
---|
335 | double[][] qualitiesFinal = new double[rankingFinal[0].Count][];
|
---|
336 | double[][] populationFinal = new double[rankingFinal[0].Count][];
|
---|
337 |
|
---|
338 | for (int i = 0; i < rankingFinal[0].Count; ++i)
|
---|
339 | {
|
---|
340 | qualitiesFinal[i] = new double[Problem.Objectives];
|
---|
341 | populationFinal[i] = new double[Problem.Objectives];
|
---|
342 | for (int j = 0; j < Problem.Objectives; ++j)
|
---|
343 | {
|
---|
344 | populationFinal[i][j] = rankingFinal[0][i].Population[j];
|
---|
345 | qualitiesFinal[i][j] = rankingFinal[0][i].Quality[j];
|
---|
346 | }
|
---|
347 | }
|
---|
348 | IEnumerable<double[]> en = qualitiesFinal;
|
---|
349 | IEnumerable<double[]> frontVectors = NonDominatedSelect.selectNonDominatedVectors(qualitiesFinal, Problem.TestFunction.Maximization(objectives), true);
|
---|
350 | //update the results
|
---|
351 |
|
---|
352 | ResultsEvaluations = this.evals;
|
---|
353 | ResultsBestFront = new DoubleMatrix(MultiObjectiveTestFunctionProblem.To2D(qualitiesFinal));
|
---|
354 | ResultsCrowding = Crowding.Calculate(qualitiesFinal, Problem.TestFunction.Bounds(objectives));
|
---|
355 | ResultsInvertedGenerationalDistance = InvertedGenerationalDistance.Calculate(en, optimalfront, 1);
|
---|
356 | ResultsHypervolume = Hypervolume.Calculate(frontVectors, Problem.TestFunction.ReferencePoint(objectives), Problem.TestFunction.Maximization(objectives));
|
---|
357 | ResultsGenerationalDistance = GenerationalDistance.Calculate(qualitiesFinal, optimalfront, 1);
|
---|
358 | Results["Scatterplot"].Value = new MOSolution(qualitiesFinal, populationFinal, opf, objectives);
|
---|
359 | ResultsSpacing = Spacing.Calculate(qualitiesFinal);
|
---|
360 |
|
---|
361 | if (ResultsIGDBest > ResultsInvertedGenerationalDistance) {
|
---|
362 | ResultsIGDBest = ResultsInvertedGenerationalDistance;
|
---|
363 | }
|
---|
364 | if (ResultsIGDWorst < ResultsInvertedGenerationalDistance)
|
---|
365 | {
|
---|
366 | ResultsIGDWorst = ResultsInvertedGenerationalDistance;
|
---|
367 | }
|
---|
368 | this.IGDSumm += ResultsInvertedGenerationalDistance;
|
---|
369 | ResultsIGDMean = this.IGDSumm / ResultsGenerations;
|
---|
370 | }
|
---|
371 |
|
---|
372 | private int getWorstIndex(List<SolutionSet> SolutionsList)
|
---|
373 | {
|
---|
374 | int result = 0;
|
---|
375 |
|
---|
376 | if ((SolutionsList == null) || SolutionsList.Count == 0)
|
---|
377 | {
|
---|
378 | result = 0;
|
---|
379 | }
|
---|
380 | else
|
---|
381 | {
|
---|
382 | SolutionSet worstKnown = SolutionsList[0],
|
---|
383 | candidateSolution;
|
---|
384 | int flag;
|
---|
385 | for (int i = 1; i < SolutionsList.Count; i++)
|
---|
386 | {
|
---|
387 | candidateSolution = SolutionsList[i];
|
---|
388 | flag = compareDomination(worstKnown, candidateSolution);
|
---|
389 | if (flag == -1)
|
---|
390 | {
|
---|
391 | result = i;
|
---|
392 | worstKnown = candidateSolution;
|
---|
393 | }
|
---|
394 | }
|
---|
395 | }
|
---|
396 | return result;
|
---|
397 | }
|
---|
398 |
|
---|
399 | protected SolutionSet createIndividual()
|
---|
400 | {
|
---|
401 | var dim = Problem.ProblemSize;
|
---|
402 | var lb = Problem.Bounds[0, 0];
|
---|
403 | var ub = Problem.Bounds[0, 1];
|
---|
404 | var range = ub - lb;
|
---|
405 | var v = new double[Problem.ProblemSize];
|
---|
406 | SolutionSet solutionObject = new SolutionSet(PopulationSizeParameter.Value.Value);
|
---|
407 |
|
---|
408 | for (int i = 0; i < Problem.ProblemSize; ++i)
|
---|
409 | {
|
---|
410 | v[i] = _random.NextDouble() * range + lb;
|
---|
411 |
|
---|
412 | }
|
---|
413 | solutionObject.createSolution(v);
|
---|
414 | return solutionObject;
|
---|
415 | }
|
---|
416 |
|
---|
417 | private SolutionSet createEmptyIndividual()
|
---|
418 | {
|
---|
419 | SolutionSet solutionObject = new SolutionSet(PopulationSizeParameter.Value.Value);
|
---|
420 | var n = new RealVector(Problem.ProblemSize);
|
---|
421 | solutionObject.Population = n;
|
---|
422 | return solutionObject;
|
---|
423 | }
|
---|
424 |
|
---|
425 | protected void initProgress()
|
---|
426 | {
|
---|
427 | this.evals = PopulationSizeParameter.Value.Value;
|
---|
428 | }
|
---|
429 |
|
---|
430 | protected void updateProgres()
|
---|
431 | {
|
---|
432 | this.evals++;
|
---|
433 | }
|
---|
434 |
|
---|
435 | protected SolutionSet[] selection(List<SolutionSet> population, int i)
|
---|
436 | {
|
---|
437 | SolutionSet[] parents = new SolutionSet[3];
|
---|
438 | int r0, r1, r2;
|
---|
439 | //assure the selected vectors r0, r1 and r2 are different
|
---|
440 | do
|
---|
441 | {
|
---|
442 | r0 = _random.Next(0, PopulationSizeParameter.Value.Value);
|
---|
443 | } while (r0 == i);
|
---|
444 | do
|
---|
445 | {
|
---|
446 | r1 = _random.Next(0, PopulationSizeParameter.Value.Value);
|
---|
447 | } while (r1 == i || r1 == r0);
|
---|
448 | do
|
---|
449 | {
|
---|
450 | r2 = _random.Next(0, PopulationSizeParameter.Value.Value);
|
---|
451 | } while (r2 == i || r2 == r0 || r2 == r1);
|
---|
452 |
|
---|
453 | parents[0] = population[r0];
|
---|
454 | parents[1] = population[r1];
|
---|
455 | parents[2] = population[r2];
|
---|
456 |
|
---|
457 | return parents;
|
---|
458 | }
|
---|
459 |
|
---|
460 | protected SolutionSet reproduction(SolutionSet parent, SolutionSet[] parentsSolutions)
|
---|
461 | {
|
---|
462 | var individual = createEmptyIndividual();
|
---|
463 | double rnbr = _random.Next(0, Problem.ProblemSize);
|
---|
464 | for (int m = 0; m < Problem.ProblemSize; m++)
|
---|
465 | {
|
---|
466 | if (_random.NextDouble() < CrossoverProbabilityParameter.Value.Value || m == rnbr)
|
---|
467 | {
|
---|
468 | double value;
|
---|
469 | value = parentsSolutions[2].Population[m] +
|
---|
470 | ScalingFactorParameter.Value.Value * (parentsSolutions[0].Population[m] - parentsSolutions[1].Population[m]);
|
---|
471 | //check the problem upper and lower bounds
|
---|
472 | if (value > Problem.Bounds[0, 1]) value = Problem.Bounds[0, 1];
|
---|
473 | if (value < Problem.Bounds[0, 0]) value = Problem.Bounds[0, 0];
|
---|
474 | individual.Population[m] = value;
|
---|
475 | }
|
---|
476 | else
|
---|
477 | {
|
---|
478 | double value;
|
---|
479 | value = parent.Population[m];
|
---|
480 | individual.Population[m] = value;
|
---|
481 | }
|
---|
482 | }
|
---|
483 | return individual;
|
---|
484 | }
|
---|
485 |
|
---|
486 | private List<SolutionSet> crowdingDistanceSelection(List<SolutionSet>[] ranking)
|
---|
487 | {
|
---|
488 | List<SolutionSet> population = new List<SolutionSet>();
|
---|
489 | int rankingIndex = 0;
|
---|
490 | while (populationIsNotFull(population))
|
---|
491 | {
|
---|
492 | if (subFrontFillsIntoThePopulation(ranking, rankingIndex, population))
|
---|
493 | {
|
---|
494 | addRankedSolutionToPopulation(ranking, rankingIndex, population);
|
---|
495 | rankingIndex++;
|
---|
496 | }
|
---|
497 | else {
|
---|
498 | crowdingDistanceAssignment(ranking[rankingIndex]);
|
---|
499 | addLastRankedSolutionToPopulation(ranking, rankingIndex, population);
|
---|
500 | }
|
---|
501 | }
|
---|
502 | return population;
|
---|
503 | }
|
---|
504 |
|
---|
505 | private void addLastRankedSolutionToPopulation(List<SolutionSet>[] ranking, int rankingIndex, List<SolutionSet> population)
|
---|
506 | {
|
---|
507 | List<SolutionSet> currentRankedFront = ranking[rankingIndex];
|
---|
508 | //descending sort and add the front with highest crowding distance to the population
|
---|
509 | currentRankedFront.Sort((x, y) => -x.CrowdingDistance.CompareTo(y.CrowdingDistance));
|
---|
510 | int i = 0;
|
---|
511 | while (population.Count < PopulationSizeParameter.Value.Value)
|
---|
512 | {
|
---|
513 | population.Add(currentRankedFront[i]);
|
---|
514 | i++;
|
---|
515 | }
|
---|
516 | }
|
---|
517 |
|
---|
518 | public void crowdingDistanceAssignment(List<SolutionSet> rankingSubfront)
|
---|
519 | {
|
---|
520 | int size = rankingSubfront.Count;
|
---|
521 |
|
---|
522 | if (size == 0)
|
---|
523 | return;
|
---|
524 |
|
---|
525 | if (size == 1)
|
---|
526 | {
|
---|
527 | rankingSubfront[0].CrowdingDistance = double.PositiveInfinity;
|
---|
528 | return;
|
---|
529 | }
|
---|
530 |
|
---|
531 | if (size == 2)
|
---|
532 | {
|
---|
533 | rankingSubfront[0].CrowdingDistance = double.PositiveInfinity;
|
---|
534 | rankingSubfront[1].CrowdingDistance = double.PositiveInfinity;
|
---|
535 | return;
|
---|
536 | }
|
---|
537 |
|
---|
538 | //Use a new SolutionSet to evite alter original solutionSet
|
---|
539 | List<SolutionSet> front = new List<SolutionSet>(size);
|
---|
540 | for (int i = 0; i < size; i++)
|
---|
541 | {
|
---|
542 | front.Add(rankingSubfront[i]);
|
---|
543 | }
|
---|
544 |
|
---|
545 | for (int i = 0; i < size; i++)
|
---|
546 | front[i].CrowdingDistance = 0.0;
|
---|
547 |
|
---|
548 | double objetiveMaxn;
|
---|
549 | double objetiveMinn;
|
---|
550 | double distance;
|
---|
551 |
|
---|
552 | for (int i = 0; i < Problem.Objectives; i++)
|
---|
553 | {
|
---|
554 | // Sort the front population by the objective i
|
---|
555 | front.Sort((x, y) => x.Quality[i].CompareTo(y.Quality[i]));
|
---|
556 | objetiveMinn = front[0].Quality[i];
|
---|
557 | objetiveMaxn = front[front.Count - 1].Quality[i];
|
---|
558 |
|
---|
559 | //Set crowding distance for the current front
|
---|
560 | front[0].CrowdingDistance = double.PositiveInfinity;
|
---|
561 | front[size - 1].CrowdingDistance = double.PositiveInfinity;
|
---|
562 |
|
---|
563 | for (int j = 1; j < size - 1; j++)
|
---|
564 | {
|
---|
565 | distance = front[j + 1].Quality[i] - front[j - 1].Quality[i];
|
---|
566 | distance = distance / (objetiveMaxn - objetiveMinn);
|
---|
567 | distance += front[j].CrowdingDistance;
|
---|
568 | front[j].CrowdingDistance = distance;
|
---|
569 | }
|
---|
570 | }
|
---|
571 | }
|
---|
572 |
|
---|
573 | private void addRankedSolutionToPopulation(List<SolutionSet>[] ranking, int rankingIndex, List<SolutionSet> population)
|
---|
574 | {
|
---|
575 | foreach (SolutionSet solution in ranking[rankingIndex])
|
---|
576 | {
|
---|
577 | population.Add(solution);
|
---|
578 | }
|
---|
579 | }
|
---|
580 |
|
---|
581 | private bool subFrontFillsIntoThePopulation(List<SolutionSet>[] ranking, int rankingIndex, List<SolutionSet> population)
|
---|
582 | {
|
---|
583 | return ranking[rankingIndex].Count < (PopulationSizeParameter.Value.Value - population.Count);
|
---|
584 | }
|
---|
585 |
|
---|
586 | private bool populationIsNotFull(List<SolutionSet> population)
|
---|
587 | {
|
---|
588 | return population.Count < PopulationSizeParameter.Value.Value;
|
---|
589 | }
|
---|
590 |
|
---|
591 | private List<SolutionSet>[] computeRanking(List<SolutionSet> tmpList)
|
---|
592 | {
|
---|
593 | // dominateMe[i] contains the number of solutions dominating i
|
---|
594 | int[] dominateMe = new int[tmpList.Count];
|
---|
595 |
|
---|
596 | // iDominate[k] contains the list of solutions dominated by k
|
---|
597 | List<int>[] iDominate = new List<int>[tmpList.Count];
|
---|
598 |
|
---|
599 | // front[i] contains the list of individuals belonging to the front i
|
---|
600 | List<int>[] front = new List<int>[tmpList.Count + 1];
|
---|
601 |
|
---|
602 | // flagDominate is an auxiliar encodings.variable
|
---|
603 | int flagDominate;
|
---|
604 |
|
---|
605 | // Initialize the fronts
|
---|
606 | for (int i = 0; i < front.Length; i++)
|
---|
607 | {
|
---|
608 | front[i] = new List<int>();
|
---|
609 | }
|
---|
610 |
|
---|
611 | //-> Fast non dominated sorting algorithm
|
---|
612 | // Contribution of Guillaume Jacquenot
|
---|
613 | for (int p = 0; p < tmpList.Count; p++)
|
---|
614 | {
|
---|
615 | // Initialize the list of individuals that i dominate and the number
|
---|
616 | // of individuals that dominate me
|
---|
617 | iDominate[p] = new List<int>();
|
---|
618 | dominateMe[p] = 0;
|
---|
619 | }
|
---|
620 | for (int p = 0; p < (tmpList.Count - 1); p++)
|
---|
621 | {
|
---|
622 | // For all q individuals , calculate if p dominates q or vice versa
|
---|
623 | for (int q = p + 1; q < tmpList.Count; q++)
|
---|
624 | {
|
---|
625 | flagDominate = compareConstraintsViolation(tmpList[p], tmpList[q]);
|
---|
626 | if (flagDominate == 0) {
|
---|
627 | flagDominate = compareDomination(tmpList[p], tmpList[q]);
|
---|
628 | }
|
---|
629 | if (flagDominate == -1)
|
---|
630 | {
|
---|
631 | iDominate[p].Add(q);
|
---|
632 | dominateMe[q]++;
|
---|
633 | }
|
---|
634 | else if (flagDominate == 1)
|
---|
635 | {
|
---|
636 | iDominate[q].Add(p);
|
---|
637 | dominateMe[p]++;
|
---|
638 | }
|
---|
639 | }
|
---|
640 | // If nobody dominates p, p belongs to the first front
|
---|
641 | }
|
---|
642 | for (int i = 0; i < tmpList.Count; i++)
|
---|
643 | {
|
---|
644 | if (dominateMe[i] == 0)
|
---|
645 | {
|
---|
646 | front[0].Add(i);
|
---|
647 | tmpList[i].Rank = 0;
|
---|
648 | }
|
---|
649 | }
|
---|
650 |
|
---|
651 | //Obtain the rest of fronts
|
---|
652 | int k = 0;
|
---|
653 |
|
---|
654 | while (front[k].Count != 0)
|
---|
655 | {
|
---|
656 | k++;
|
---|
657 | foreach (var it1 in front[k - 1])
|
---|
658 | {
|
---|
659 | foreach (var it2 in iDominate[it1])
|
---|
660 | {
|
---|
661 | int index = it2;
|
---|
662 | dominateMe[index]--;
|
---|
663 | if (dominateMe[index] == 0)
|
---|
664 | {
|
---|
665 | front[k].Add(index);
|
---|
666 | tmpList[index].Rank = k;
|
---|
667 | }
|
---|
668 | }
|
---|
669 | }
|
---|
670 | }
|
---|
671 | //<-
|
---|
672 |
|
---|
673 | var rankedSubpopulation = new List<SolutionSet>[k];
|
---|
674 | //0,1,2,....,i-1 are front, then i fronts
|
---|
675 | for (int j = 0; j < k; j++)
|
---|
676 | {
|
---|
677 | rankedSubpopulation[j] = new List<SolutionSet>(front[j].Count);
|
---|
678 | foreach (var it1 in front[j])
|
---|
679 | {
|
---|
680 | rankedSubpopulation[j].Add(tmpList[it1]);
|
---|
681 | }
|
---|
682 | }
|
---|
683 | return rankedSubpopulation;
|
---|
684 | }
|
---|
685 |
|
---|
686 | private int compareDomination(SolutionSet solution1, SolutionSet solution2)
|
---|
687 | {
|
---|
688 | int dominate1; // dominate1 indicates if some objective of solution1
|
---|
689 | // dominates the same objective in solution2. dominate2
|
---|
690 | int dominate2; // is the complementary of dominate1.
|
---|
691 |
|
---|
692 | dominate1 = 0;
|
---|
693 | dominate2 = 0;
|
---|
694 |
|
---|
695 | int flag; //stores the result of the comparison
|
---|
696 |
|
---|
697 | // Test to determine whether at least a solution violates some constraint
|
---|
698 | if (needToCompareViolations(solution1, solution2))
|
---|
699 | {
|
---|
700 | return compareConstraintsViolation(solution1, solution2);
|
---|
701 | }
|
---|
702 |
|
---|
703 | // Equal number of violated constraints. Applying a dominance Test then
|
---|
704 | double value1, value2;
|
---|
705 | for (int i = 0; i < Problem.Objectives; i++)
|
---|
706 | {
|
---|
707 | value1 = solution1.Quality[i];
|
---|
708 | value2 = solution2.Quality[i];
|
---|
709 | if (value1 < value2)
|
---|
710 | {
|
---|
711 | flag = -1;
|
---|
712 | }
|
---|
713 | else if (value2 < value1)
|
---|
714 | {
|
---|
715 | flag = 1;
|
---|
716 | }
|
---|
717 | else
|
---|
718 | {
|
---|
719 | flag = 0;
|
---|
720 | }
|
---|
721 |
|
---|
722 | if (flag == -1)
|
---|
723 | {
|
---|
724 | dominate1 = 1;
|
---|
725 | }
|
---|
726 |
|
---|
727 | if (flag == 1)
|
---|
728 | {
|
---|
729 | dominate2 = 1;
|
---|
730 | }
|
---|
731 | }
|
---|
732 |
|
---|
733 | if (dominate1 == dominate2)
|
---|
734 | {
|
---|
735 | return 0; //No one dominate the other
|
---|
736 | }
|
---|
737 | if (dominate1 == 1)
|
---|
738 | {
|
---|
739 | return -1; // solution1 dominate
|
---|
740 | }
|
---|
741 | return 1; // solution2 dominate
|
---|
742 | }
|
---|
743 |
|
---|
744 | private bool needToCompareViolations(SolutionSet solution1, SolutionSet solution2)
|
---|
745 | {
|
---|
746 | bool needToCompare;
|
---|
747 | needToCompare = (solution1.OverallConstrainViolation < 0) || (solution2.OverallConstrainViolation < 0);
|
---|
748 |
|
---|
749 | return needToCompare;
|
---|
750 | }
|
---|
751 |
|
---|
752 | private int compareConstraintsViolation(SolutionSet solution1, SolutionSet solution2)
|
---|
753 | {
|
---|
754 | int result;
|
---|
755 | double overall1, overall2;
|
---|
756 | overall1 = solution1.OverallConstrainViolation;
|
---|
757 | overall2 = solution2.OverallConstrainViolation;
|
---|
758 |
|
---|
759 | if ((overall1 < 0) && (overall2 < 0))
|
---|
760 | {
|
---|
761 | if (overall1 > overall2)
|
---|
762 | {
|
---|
763 | result = -1;
|
---|
764 | }
|
---|
765 | else if (overall2 > overall1)
|
---|
766 | {
|
---|
767 | result = 1;
|
---|
768 | }
|
---|
769 | else
|
---|
770 | {
|
---|
771 | result = 0;
|
---|
772 | }
|
---|
773 | }
|
---|
774 | else if ((overall1 == 0) && (overall2 < 0))
|
---|
775 | {
|
---|
776 | result = -1;
|
---|
777 | }
|
---|
778 | else if ((overall1 < 0) && (overall2 == 0))
|
---|
779 | {
|
---|
780 | result = 1;
|
---|
781 | }
|
---|
782 | else
|
---|
783 | {
|
---|
784 | result = 0;
|
---|
785 | }
|
---|
786 | return result;
|
---|
787 | }
|
---|
788 | }
|
---|
789 | }
|
---|
790 |
|
---|
791 |
|
---|
792 |
|
---|