[13851] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | * Implementation is based on jMetal framework https://github.com/jMetal/jMetal
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 | using HeuristicLab.Analysis;
|
---|
[13619] | 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.TestFunctions;
|
---|
| 31 | using HeuristicLab.Random;
|
---|
| 32 | using System;
|
---|
[13632] | 33 | using System.Collections.Generic;
|
---|
[13619] | 34 | using System.Threading;
|
---|
| 35 |
|
---|
[14700] | 36 | namespace HeuristicLab.Algorithms.DifferentialEvolution {
|
---|
[13619] | 37 |
|
---|
[14700] | 38 | [Item("Differential Evolution (DE)", "A differential evolution algorithm.")]
|
---|
| 39 | [StorableClass]
|
---|
| 40 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 400)]
|
---|
| 41 | public class DifferentialEvolution : BasicAlgorithm {
|
---|
| 42 | public Func<IEnumerable<double>, double> Evaluation;
|
---|
[13619] | 43 |
|
---|
[14700] | 44 | public override Type ProblemType {
|
---|
| 45 | get { return typeof(SingleObjectiveTestFunctionProblem); }
|
---|
| 46 | }
|
---|
| 47 | public new SingleObjectiveTestFunctionProblem Problem {
|
---|
| 48 | get { return (SingleObjectiveTestFunctionProblem)base.Problem; }
|
---|
| 49 | set { base.Problem = value; }
|
---|
| 50 | }
|
---|
[13619] | 51 |
|
---|
[14700] | 52 | private readonly IRandom _random = new MersenneTwister();
|
---|
| 53 | private int evals;
|
---|
[13710] | 54 |
|
---|
[14700] | 55 | #region ParameterNames
|
---|
| 56 | private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
|
---|
| 57 | private const string SeedParameterName = "Seed";
|
---|
| 58 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 59 | private const string CrossoverProbabilityParameterName = "CrossoverProbability";
|
---|
| 60 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
| 61 | private const string ScalingFactorParameterName = "ScalingFactor";
|
---|
| 62 | private const string ValueToReachParameterName = "ValueToReach";
|
---|
| 63 | #endregion
|
---|
[13619] | 64 |
|
---|
[14700] | 65 | #region ParameterProperties
|
---|
| 66 | public IFixedValueParameter<IntValue> MaximumEvaluationsParameter {
|
---|
| 67 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumEvaluationsParameterName]; }
|
---|
| 68 | }
|
---|
| 69 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
| 70 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 71 | }
|
---|
| 72 | public FixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 73 | get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 74 | }
|
---|
| 75 | private ValueParameter<IntValue> PopulationSizeParameter {
|
---|
| 76 | get { return (ValueParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
| 77 | }
|
---|
| 78 | public ValueParameter<DoubleValue> CrossoverProbabilityParameter {
|
---|
| 79 | get { return (ValueParameter<DoubleValue>)Parameters[CrossoverProbabilityParameterName]; }
|
---|
| 80 | }
|
---|
| 81 | public ValueParameter<DoubleValue> ScalingFactorParameter {
|
---|
| 82 | get { return (ValueParameter<DoubleValue>)Parameters[ScalingFactorParameterName]; }
|
---|
| 83 | }
|
---|
| 84 | public ValueParameter<DoubleValue> ValueToReachParameter {
|
---|
| 85 | get { return (ValueParameter<DoubleValue>)Parameters[ValueToReachParameterName]; }
|
---|
| 86 | }
|
---|
| 87 | #endregion
|
---|
[13619] | 88 |
|
---|
[14700] | 89 | #region Properties
|
---|
| 90 | public int MaximumEvaluations {
|
---|
| 91 | get { return MaximumEvaluationsParameter.Value.Value; }
|
---|
| 92 | set { MaximumEvaluationsParameter.Value.Value = value; }
|
---|
| 93 | }
|
---|
[13632] | 94 |
|
---|
[14700] | 95 | public Double CrossoverProbability {
|
---|
| 96 | get { return CrossoverProbabilityParameter.Value.Value; }
|
---|
| 97 | set { CrossoverProbabilityParameter.Value.Value = value; }
|
---|
| 98 | }
|
---|
| 99 | public Double ScalingFactor {
|
---|
| 100 | get { return ScalingFactorParameter.Value.Value; }
|
---|
| 101 | set { ScalingFactorParameter.Value.Value = value; }
|
---|
| 102 | }
|
---|
| 103 | public int Seed {
|
---|
| 104 | get { return SeedParameter.Value.Value; }
|
---|
| 105 | set { SeedParameter.Value.Value = value; }
|
---|
| 106 | }
|
---|
| 107 | public bool SetSeedRandomly {
|
---|
| 108 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 109 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 110 | }
|
---|
| 111 | public IntValue PopulationSize {
|
---|
| 112 | get { return PopulationSizeParameter.Value; }
|
---|
| 113 | set { PopulationSizeParameter.Value = value; }
|
---|
| 114 | }
|
---|
| 115 | public Double ValueToReach {
|
---|
| 116 | get { return ValueToReachParameter.Value.Value; }
|
---|
| 117 | set { ValueToReachParameter.Value.Value = value; }
|
---|
| 118 | }
|
---|
| 119 | #endregion
|
---|
[13619] | 120 |
|
---|
[14700] | 121 | #region ResultsProperties
|
---|
| 122 | private double ResultsBestQuality {
|
---|
| 123 | get { return ((DoubleValue)Results["Best Quality"].Value).Value; }
|
---|
| 124 | set { ((DoubleValue)Results["Best Quality"].Value).Value = value; }
|
---|
| 125 | }
|
---|
[13619] | 126 |
|
---|
[14700] | 127 | private double VTRBestQuality {
|
---|
| 128 | get { return ((DoubleValue)Results["VTR"].Value).Value; }
|
---|
| 129 | set { ((DoubleValue)Results["VTR"].Value).Value = value; }
|
---|
| 130 | }
|
---|
[13674] | 131 |
|
---|
[14700] | 132 | private RealVector ResultsBestSolution {
|
---|
| 133 | get { return (RealVector)Results["Best Solution"].Value; }
|
---|
| 134 | set { Results["Best Solution"].Value = value; }
|
---|
| 135 | }
|
---|
[13619] | 136 |
|
---|
[14700] | 137 | private int ResultsEvaluations {
|
---|
| 138 | get { return ((IntValue)Results["Evaluations"].Value).Value; }
|
---|
| 139 | set { ((IntValue)Results["Evaluations"].Value).Value = value; }
|
---|
| 140 | }
|
---|
| 141 | private int ResultsIterations {
|
---|
| 142 | get { return ((IntValue)Results["Iterations"].Value).Value; }
|
---|
| 143 | set { ((IntValue)Results["Iterations"].Value).Value = value; }
|
---|
| 144 | }
|
---|
[13619] | 145 |
|
---|
[14700] | 146 | private DataTable ResultsQualities {
|
---|
| 147 | get { return ((DataTable)Results["Qualities"].Value); }
|
---|
| 148 | }
|
---|
| 149 | private DataRow ResultsQualitiesBest {
|
---|
| 150 | get { return ResultsQualities.Rows["Best Quality"]; }
|
---|
| 151 | }
|
---|
[13619] | 152 |
|
---|
[14700] | 153 | #endregion
|
---|
[13619] | 154 |
|
---|
[14700] | 155 | [StorableConstructor]
|
---|
| 156 | protected DifferentialEvolution(bool deserializing) : base(deserializing) { }
|
---|
[13619] | 157 |
|
---|
[14700] | 158 | protected DifferentialEvolution(DifferentialEvolution original, Cloner cloner)
|
---|
| 159 | : base(original, cloner) {
|
---|
| 160 | }
|
---|
[13619] | 161 |
|
---|
[14700] | 162 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 163 | return new DifferentialEvolution(this, cloner);
|
---|
| 164 | }
|
---|
[13619] | 165 |
|
---|
[14700] | 166 | public DifferentialEvolution() {
|
---|
| 167 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue)));
|
---|
| 168 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
| 169 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
| 170 | Parameters.Add(new ValueParameter<IntValue>(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(100)));
|
---|
| 171 | Parameters.Add(new ValueParameter<DoubleValue>(CrossoverProbabilityParameterName, "The value for crossover rate", new DoubleValue(0.88)));
|
---|
| 172 | Parameters.Add(new ValueParameter<DoubleValue>(ScalingFactorParameterName, "The value for scaling factor", new DoubleValue(0.47)));
|
---|
| 173 | Parameters.Add(new ValueParameter<DoubleValue>(ValueToReachParameterName, "Value to reach (VTR) parameter", new DoubleValue(0.00000001)));
|
---|
| 174 | }
|
---|
[13619] | 175 |
|
---|
[14700] | 176 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[13632] | 177 |
|
---|
[14700] | 178 | // Set up the results display
|
---|
| 179 | Results.Add(new Result("Iterations", new IntValue(0)));
|
---|
| 180 | Results.Add(new Result("Evaluations", new IntValue(0)));
|
---|
| 181 | Results.Add(new Result("Best Solution", new RealVector()));
|
---|
| 182 | Results.Add(new Result("Best Quality", new DoubleValue(double.NaN)));
|
---|
| 183 | Results.Add(new Result("VTR", new DoubleValue(double.NaN)));
|
---|
| 184 | var table = new DataTable("Qualities");
|
---|
| 185 | table.Rows.Add(new DataRow("Best Quality"));
|
---|
| 186 | Results.Add(new Result("Qualities", table));
|
---|
[13619] | 187 |
|
---|
[13674] | 188 |
|
---|
[14700] | 189 | //problem variables
|
---|
| 190 | var dim = Problem.ProblemSize.Value;
|
---|
| 191 | var lb = Problem.Bounds[0, 0];
|
---|
| 192 | var ub = Problem.Bounds[0, 1];
|
---|
| 193 | var range = ub - lb;
|
---|
| 194 | this.evals = 0;
|
---|
[13851] | 195 |
|
---|
[14700] | 196 | double[,] populationOld = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 197 | double[,] mutationPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 198 | double[,] trialPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value];
|
---|
| 199 | double[] bestPopulation = new double[Problem.ProblemSize.Value];
|
---|
| 200 | double[] bestPopulationIteration = new double[Problem.ProblemSize.Value];
|
---|
[13632] | 201 |
|
---|
[14700] | 202 | //create initial population
|
---|
| 203 | //population is a matrix of size PopulationSize*ProblemSize
|
---|
| 204 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 205 | for(int j = 0; j < Problem.ProblemSize.Value; j++) {
|
---|
| 206 | populationOld[i, j] = _random.NextDouble() * range + lb;
|
---|
| 207 | }
|
---|
| 208 | }
|
---|
[13632] | 209 |
|
---|
[14700] | 210 | //evaluate the best member after the intialiazation
|
---|
| 211 | //the idea is to select first member and after that to check the others members from the population
|
---|
[13632] | 212 |
|
---|
[14700] | 213 | int best_index = 0;
|
---|
| 214 | double[] populationRow = new double[Problem.ProblemSize.Value];
|
---|
| 215 | double[] qualityPopulation = new double[PopulationSizeParameter.Value.Value];
|
---|
| 216 | bestPopulation = getMatrixRow(populationOld, best_index);
|
---|
| 217 | RealVector bestPopulationVector = new RealVector(bestPopulation);
|
---|
| 218 | double bestPopulationValue = Obj(bestPopulationVector);
|
---|
| 219 | qualityPopulation[best_index] = bestPopulationValue;
|
---|
| 220 | RealVector selectionVector;
|
---|
| 221 | RealVector trialVector;
|
---|
| 222 | double qtrial;
|
---|
[13674] | 223 |
|
---|
| 224 |
|
---|
[14700] | 225 | for(var i = 1; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 226 | populationRow = getMatrixRow(populationOld, i);
|
---|
| 227 | trialVector = new RealVector(populationRow);
|
---|
[13632] | 228 |
|
---|
[14700] | 229 | qtrial = Obj(trialVector);
|
---|
| 230 | qualityPopulation[i] = qtrial;
|
---|
[13674] | 231 |
|
---|
[14700] | 232 | if(qtrial > bestPopulationValue) {
|
---|
| 233 | bestPopulationVector = new RealVector(populationRow);
|
---|
| 234 | bestPopulationValue = qtrial;
|
---|
| 235 | best_index = i;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
[13632] | 238 |
|
---|
[14700] | 239 | int iterations = 1;
|
---|
[13674] | 240 |
|
---|
[14700] | 241 | // Loop until iteration limit reached or canceled.
|
---|
| 242 | // todo replace with a function
|
---|
| 243 | // && bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value
|
---|
| 244 | while(ResultsEvaluations < MaximumEvaluations
|
---|
| 245 | && !cancellationToken.IsCancellationRequested
|
---|
| 246 | && (bestPopulationValue - Problem.BestKnownQuality.Value) > ValueToReachParameter.Value.Value) {
|
---|
| 247 | //mutation DE/rand/1/bin; classic DE
|
---|
| 248 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 249 | int r0, r1, r2;
|
---|
[13632] | 250 |
|
---|
[14700] | 251 | //assure the selected vectors r0, r1 and r2 are different
|
---|
| 252 | do {
|
---|
| 253 | r0 = _random.Next(0, PopulationSizeParameter.Value.Value);
|
---|
| 254 | } while(r0 == i);
|
---|
| 255 | do {
|
---|
| 256 | r1 = _random.Next(0, PopulationSizeParameter.Value.Value);
|
---|
| 257 | } while(r1 == i || r1 == r0);
|
---|
| 258 | do {
|
---|
| 259 | r2 = _random.Next(0, PopulationSizeParameter.Value.Value);
|
---|
| 260 | } while(r2 == i || r2 == r0 || r2 == r1);
|
---|
[13710] | 261 |
|
---|
[14700] | 262 | for(int j = 0; j < getMatrixRow(mutationPopulation, i).Length; j++) {
|
---|
| 263 | mutationPopulation[i, j] = populationOld[r0, j] +
|
---|
| 264 | ScalingFactorParameter.Value.Value * (populationOld[r1, j] - populationOld[r2, j]);
|
---|
| 265 | //check the problem upper and lower bounds
|
---|
| 266 | if(mutationPopulation[i, j] > ub) mutationPopulation[i, j] = ub;
|
---|
| 267 | if(mutationPopulation[i, j] < lb) mutationPopulation[i, j] = lb;
|
---|
| 268 | }
|
---|
| 269 | }
|
---|
[13632] | 270 |
|
---|
[14700] | 271 | //uniform crossover
|
---|
| 272 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 273 | double rnbr = _random.Next(0, Problem.ProblemSize.Value);
|
---|
| 274 | for(int j = 0; j < getMatrixRow(mutationPopulation, i).Length; j++) {
|
---|
| 275 | if(_random.NextDouble() <= CrossoverProbabilityParameter.Value.Value || j == rnbr) {
|
---|
| 276 | trialPopulation[i, j] = mutationPopulation[i, j];
|
---|
| 277 | } else {
|
---|
| 278 | trialPopulation[i, j] = populationOld[i, j];
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 | }
|
---|
[13632] | 282 |
|
---|
[14700] | 283 | //One-to-One Survivor Selection
|
---|
| 284 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 285 | selectionVector = new RealVector(getMatrixRow(populationOld, i));
|
---|
| 286 | trialVector = new RealVector(getMatrixRow(trialPopulation, i));
|
---|
[13632] | 287 |
|
---|
[14700] | 288 | var selectionEval = qualityPopulation[i];
|
---|
| 289 | var trialEval = Obj(trialVector);
|
---|
[13632] | 290 |
|
---|
[14700] | 291 | if(trialEval < selectionEval) {
|
---|
| 292 | for(int j = 0; j < getMatrixRow(populationOld, i).Length; j++) {
|
---|
| 293 | populationOld[i, j] = trialPopulation[i, j];
|
---|
| 294 | }
|
---|
| 295 | qualityPopulation[i] = trialEval;
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
[13674] | 298 |
|
---|
[14700] | 299 | //update the best candidate
|
---|
| 300 | for(int i = 0; i < PopulationSizeParameter.Value.Value; i++) {
|
---|
| 301 | selectionVector = new RealVector(getMatrixRow(populationOld, i));
|
---|
| 302 | var quality = qualityPopulation[i];
|
---|
| 303 | if(quality < bestPopulationValue) {
|
---|
| 304 | bestPopulationVector = (RealVector)selectionVector.Clone();
|
---|
| 305 | bestPopulationValue = quality;
|
---|
| 306 | }
|
---|
| 307 | }
|
---|
[13632] | 308 |
|
---|
[14700] | 309 | iterations = iterations + 1;
|
---|
[13674] | 310 |
|
---|
[14700] | 311 | //update the results
|
---|
| 312 | ResultsEvaluations = evals;
|
---|
| 313 | ResultsIterations = iterations;
|
---|
| 314 | ResultsBestSolution = bestPopulationVector;
|
---|
| 315 | ResultsBestQuality = bestPopulationValue;
|
---|
[13632] | 316 |
|
---|
[14700] | 317 | //update the results in view
|
---|
| 318 | if(iterations % 10 == 0) ResultsQualitiesBest.Values.Add(bestPopulationValue);
|
---|
| 319 | if(bestPopulationValue < Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) {
|
---|
| 320 | VTRBestQuality = bestPopulationValue;
|
---|
[13632] | 321 | }
|
---|
[14700] | 322 | }
|
---|
| 323 | }
|
---|
[13770] | 324 |
|
---|
[14700] | 325 | public override bool SupportsPause { get { return false; } } // XXX is pause actually supported?
|
---|
[13619] | 326 |
|
---|
[14700] | 327 | //evaluate the vector
|
---|
| 328 | public double Obj(RealVector x) {
|
---|
| 329 | evals = evals + 1;
|
---|
| 330 | if(Problem.Maximization.Value)
|
---|
| 331 | return -Problem.Evaluator.Evaluate(x);
|
---|
[13674] | 332 |
|
---|
[14700] | 333 | return Problem.Evaluator.Evaluate(x);
|
---|
| 334 | }
|
---|
[13674] | 335 |
|
---|
[14700] | 336 | // Get ith row from the matrix
|
---|
| 337 | public double[] getMatrixRow(double[,] Mat, int i) {
|
---|
| 338 | double[] tmp = new double[Mat.GetUpperBound(1) + 1];
|
---|
[13674] | 339 |
|
---|
[14700] | 340 | for(int j = 0; j <= Mat.GetUpperBound(1); j++) {
|
---|
| 341 | tmp[j] = Mat[i, j];
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | return tmp;
|
---|
[13619] | 345 | }
|
---|
[14700] | 346 | }
|
---|
[13619] | 347 | }
|
---|