Free cookie consent management tool by TermsFeed Policy Generator

source: branches/gteufl/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover.cs @ 13042

Last change on this file since 13042 was 12969, checked in by gkronber, 9 years ago

#2478 merged all changes from trunk to branch before trunk-reintegration

File size: 7.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Random;
30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
32  [Item("ProbabilisticFunctionalCrossover", "An operator which performs subtree swapping based on the behavioral similarity between subtrees:\n" +
33                                            "- Take two parent individuals P0 and P1\n" +
34                                            "- Randomly choose a node N from P0\n" +
35                                            "- For each matching node M from P1, calculate the behavioral distance:\n" +
36                                            "\t\tD(N,M) = 0.5 * ( abs(max(N) - max(M)) + abs(min(N) - min(M)) )\n" +
37                                            "- Make a probabilistic weighted choice of node M from P1, based on the inversed and normalized behavioral distance")]
38  public sealed class SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData {
39    [StorableConstructor]
40    private SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(bool deserializing) : base(deserializing) { }
41    private SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover(SymbolicDataAnalysisExpressionCrossover<T> original, Cloner cloner)
42      : base(original, cloner) { }
43    public SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover()
44      : base() {
45      name = "ProbabilisticFunctionalCrossover";
46    }
47    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover<T>(this, cloner); }
48
49    public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
50      ISymbolicDataAnalysisExpressionTreeInterpreter interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
51      List<int> rows = GenerateRowsToEvaluate().ToList();
52      T problemData = ProblemDataParameter.ActualValue;
53      return Cross(random, parent0, parent1, interpreter, problemData,
54                   rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
55    }
56
57    /// <summary>
58    /// Takes two parent individuals P0 and P1.
59    /// Randomly choose a node i from the first parent, then for each matching node j from the second parent, calculate the behavioral distance based on the range:
60    /// d(i,j) = 0.5 * ( abs(max(i) - max(j)) + abs(min(i) - min(j)) ).
61    /// Next, assign probabilities for the selection of a node j based on the inversed and normalized behavioral distance, then make a random weighted choice.
62    /// </summary>
63    public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
64                                                ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, T problemData, IList<int> rows, int maxDepth, int maxLength) {
65      var crossoverPoints0 = new List<CutPoint>();
66      parent0.Root.ForEachNodePostfix((n) => {
67        // the if clauses prevent the root or the startnode from being selected, although the startnode can be the parent of the node being swapped.
68        if (n.Parent != null && n.Parent != parent0.Root) {
69          crossoverPoints0.Add(new CutPoint(n.Parent, n));
70        }
71      });
72
73      var crossoverPoint0 = crossoverPoints0.SampleRandom(random);
74      int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
75      int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
76
77      var allowedBranches = new List<ISymbolicExpressionTreeNode>();
78      parent1.Root.ForEachNodePostfix((n) => {
79        if (n.Parent != null && n.Parent != parent1.Root) {
80          if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
81            allowedBranches.Add(n);
82        }
83      });
84
85      if (allowedBranches.Count == 0)
86        return parent0;
87
88      var dataset = problemData.Dataset;
89
90      // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
91      var rootSymbol = new ProgramRootSymbol();
92      var startSymbol = new StartSymbol();
93      var tree0 = CreateTreeFromNode(random, crossoverPoint0.Child, rootSymbol, startSymbol); // this will change crossoverPoint0.Child.Parent
94      double min0 = 0.0, max0 = 0.0;
95      foreach (double v in interpreter.GetSymbolicExpressionTreeValues(tree0, dataset, rows)) {
96        if (min0 > v) min0 = v;
97        if (max0 < v) max0 = v;
98      }
99      crossoverPoint0.Child.Parent = crossoverPoint0.Parent; // restore correct parent
100
101      var weights = new List<double>();
102      foreach (var node in allowedBranches) {
103        var parent = node.Parent;
104        var tree1 = CreateTreeFromNode(random, node, rootSymbol, startSymbol);
105        double min1 = 0.0, max1 = 0.0;
106        foreach (double v in interpreter.GetSymbolicExpressionTreeValues(tree1, dataset, rows)) {
107          if (min1 > v) min1 = v;
108          if (max1 < v) max1 = v;
109        }
110        double behavioralDistance = (Math.Abs(min0 - min1) + Math.Abs(max0 - max1)) / 2; // this can be NaN of Infinity because some trees are crazy like exp(exp(exp(...))), we correct that below
111        weights.Add(behavioralDistance);
112        node.Parent = parent; // restore correct node parent
113      }
114
115      // remove branches with an infinite or NaN behavioral distance
116      for (int i = weights.Count - 1; i >= 0; --i) {
117        if (Double.IsNaN(weights[i]) || Double.IsInfinity(weights[i])) {
118          weights.RemoveAt(i);
119          allowedBranches.RemoveAt(i);
120        }
121      }
122      // check if there are any allowed branches left
123      if (allowedBranches.Count == 0)
124        return parent0;
125
126      ISymbolicExpressionTreeNode selectedBranch;
127      double sum = weights.Sum();
128
129      if (sum.IsAlmost(0.0) || weights.Count == 1) // if there is only one allowed branch, or if all weights are zero
130        selectedBranch = allowedBranches[0];
131      else {
132        for (int i = 0; i != weights.Count; ++i) // normalize and invert values
133          weights[i] = 1 - weights[i] / sum;
134
135        sum = weights.Sum(); // take new sum
136
137        // compute the probabilities (selection weights)
138        for (int i = 0; i != weights.Count; ++i)
139          weights[i] /= sum;
140
141#pragma warning disable 612, 618
142        selectedBranch = allowedBranches.SelectRandom(weights, random);
143#pragma warning restore 612, 618
144      }
145      Swap(crossoverPoint0, selectedBranch);
146      return parent0;
147    }
148  }
149}
Note: See TracBrowser for help on using the repository browser.