Free cookie consent management tool by TermsFeed Policy Generator

source: branches/gp-crossover/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisExpressionSemanticSimilarityCrossover.cs @ 7086

Last change on this file since 7086 was 7072, checked in by bburlacu, 13 years ago

#1682: New versions of crossover (work-in-progress).

File size: 6.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
30using HeuristicLab.Data;
31
32namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
33
34  [Item("ProbabilisticFunctionalCrossover", "An operator which performs subtree swapping based on behavioral similarity")]
35  public sealed class SymbolicDataAnalysisExpressionSemanticSimilarityCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData
36  {
37    [StorableConstructor]
38    private SymbolicDataAnalysisExpressionSemanticSimilarityCrossover(bool deserializing) : base(deserializing) { }
39    private SymbolicDataAnalysisExpressionSemanticSimilarityCrossover(SymbolicDataAnalysisExpressionSemanticSimilarityCrossover<T> original, Cloner cloner)
40      : base(original, cloner) {
41    }
42    public SymbolicDataAnalysisExpressionSemanticSimilarityCrossover()
43      : base() {
44    }
45    public override IDeepCloneable Clone(Cloner cloner) {
46      return new SymbolicDataAnalysisExpressionSemanticSimilarityCrossover<T>(this, cloner);
47    }
48    protected override ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
49      ISymbolicDataAnalysisExpressionTreeInterpreter interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
50      IEnumerable<int> rows = GenerateRowsToEvaluate();
51      T problemData = ProblemDataParameter.ActualValue;
52      return Cross(random, parent0, parent1, interpreter, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
53    }
54    /// <summary>
55    /// Takes two parent individuals P0 and P1.
56    /// Randomly choose a node i from the first parent, then get a node j from the second parent that matches the semantic similarity criteria.
57    /// </summary>
58    public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
59                                                ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, T problemData, IEnumerable<int> rows, int maxDepth, int maxLength) {
60      List<CutPoint> crossoverPoints0 = new List<CutPoint>();
61      parent0.Root.ForEachNodePostfix((n) => {
62        if (n.Subtrees.Any() && n != parent0.Root)
63          foreach (var child in n.Subtrees)
64            crossoverPoints0.Add(new CutPoint(n, child));
65      });
66      CutPoint crossoverPoint0 = crossoverPoints0[random.Next(crossoverPoints0.Count)];
67      int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
68      int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
69
70      List<ISymbolicExpressionTreeNode> allowedBranches = new List<ISymbolicExpressionTreeNode>();
71      parent1.Root.ForEachNodePostfix((n) => {
72        if (n.Subtrees.Any() && n != parent1.Root)
73          foreach (var child in n.Subtrees)
74            if (crossoverPoint0.IsMatchingPointType(child) && (child.GetDepth() + level <= maxDepth) && (child.GetLength() + length <= maxLength))
75              allowedBranches.Add(n);
76      });
77
78      // check if empty branch is allowed
79      if (crossoverPoint0.IsMatchingPointType(null)) allowedBranches.Add(null);
80
81      if (allowedBranches.Count == 0)
82        return parent0;
83
84     var dataset = problemData.Dataset;
85
86      // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
87      var rootSymbol = new ProgramRootSymbol();
88      var startSymbol = new StartSymbol();
89      var tree0 = CreateTreeFromNode(random, crossoverPoint0.Child, rootSymbol, startSymbol);
90      IEnumerable<double> estimatedValues0 = interpreter.GetSymbolicExpressionTreeValues(tree0, dataset, rows);
91
92      ISymbolicExpressionTreeNode selectedBranch = null;
93
94      // pick the first node that fulfills the semantic similarity conditions
95      foreach (var node in allowedBranches) {
96        var tree1 = CreateTreeFromNode(random, node, rootSymbol, startSymbol);
97        IEnumerable<double> estimatedValues1 = interpreter.GetSymbolicExpressionTreeValues(tree1, dataset, rows);
98
99        //double ssd = SSD(estimatedValues0, estimatedValues1);
100        OnlineCalculatorError errorState;
101        double ssd = OnlineMeanAbsoluteErrorCalculator.Calculate(estimatedValues0, estimatedValues1, out errorState);
102
103        // TODO: introduce parameters alpha and beta for establishing the interval boundaries. the best values need to be determined experimentally
104        if (0.0001 < ssd && ssd < 10) {
105          selectedBranch = node;
106          break;
107        }
108      }
109
110      // perform the actual swap
111      if (crossoverPoint0.Child != null) {
112        // manipulate the tree of parent0 in place
113        // replace the branch in tree0 with the selected branch from tree1
114        crossoverPoint0.Parent.RemoveSubtree(crossoverPoint0.ChildIndex);
115        if (selectedBranch != null) {
116          crossoverPoint0.Parent.InsertSubtree(crossoverPoint0.ChildIndex, selectedBranch);
117        }
118      } else {
119        // child is null (additional child should be added under the parent)
120        if (selectedBranch != null) {
121          crossoverPoint0.Parent.AddSubtree(selectedBranch);
122        }
123      }
124      return parent0;
125    }
126  }
127}
Note: See TracBrowser for help on using the repository browser.