1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Common;
|
---|
32 | using HeuristicLab.Random;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
35 | public abstract class SymbolicDataAnalysisExpressionCrossover<T> : SymbolicExpressionTreeCrossover where T : class, IDataAnalysisProblemData {
|
---|
36 | private const string RandomParameterName = "Random";
|
---|
37 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
38 | private const string ProblemDataParameterName = "ProblemData";
|
---|
39 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
40 | private const string EvaluationPartitionParameterName = "EvaluationPartition";
|
---|
41 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
42 | private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
|
---|
43 | private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
|
---|
44 |
|
---|
45 | public override bool CanChangeName { get { return false; } }
|
---|
46 |
|
---|
47 | #region Parameter properties
|
---|
48 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
49 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
50 | }
|
---|
51 | public IValueLookupParameter<T> ProblemDataParameter {
|
---|
52 | get { return (IValueLookupParameter<T>)Parameters[ProblemDataParameterName]; }
|
---|
53 | }
|
---|
54 | public IValueLookupParameter<IntRange> EvaluationPartitionParameter {
|
---|
55 | get { return (IValueLookupParameter<IntRange>)Parameters[EvaluationPartitionParameterName]; }
|
---|
56 | }
|
---|
57 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
58 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
59 | }
|
---|
60 | public IValueLookupParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
61 | get { return (IValueLookupParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
62 | }
|
---|
63 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
64 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
|
---|
65 | }
|
---|
66 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
|
---|
67 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
|
---|
68 | }
|
---|
69 | #endregion
|
---|
70 |
|
---|
71 | #region Properties
|
---|
72 | public IntValue MaximumSymbolicExpressionTreeLength {
|
---|
73 | get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
|
---|
74 | }
|
---|
75 | public IntValue MaximumSymbolicExpressionTreeDepth {
|
---|
76 | get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
|
---|
77 | }
|
---|
78 | #endregion
|
---|
79 |
|
---|
80 | [StorableConstructor]
|
---|
81 | protected SymbolicDataAnalysisExpressionCrossover(bool deserializing) : base(deserializing) { }
|
---|
82 | protected SymbolicDataAnalysisExpressionCrossover(SymbolicDataAnalysisExpressionCrossover<T> original, Cloner cloner)
|
---|
83 | : base(original, cloner) {
|
---|
84 | }
|
---|
85 | public SymbolicDataAnalysisExpressionCrossover()
|
---|
86 | : base() {
|
---|
87 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree."));
|
---|
88 | Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
|
---|
89 | Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
|
---|
90 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees."));
|
---|
91 | Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index."));
|
---|
92 | }
|
---|
93 |
|
---|
94 | /// <summary>
|
---|
95 | /// Creates a SymbolicExpressionTreeNode reusing the root and start symbols (since they are expensive to create).
|
---|
96 | /// </summary>
|
---|
97 | /// <param name="random"></param>
|
---|
98 | /// <param name="node"></param>
|
---|
99 | /// <param name="rootSymbol"></param>
|
---|
100 | /// <param name="startSymbol"></param>
|
---|
101 | /// <returns></returns>
|
---|
102 | protected static ISymbolicExpressionTree CreateTreeFromNode(IRandom random, ISymbolicExpressionTreeNode node, ProgramRootSymbol rootSymbol, StartSymbol startSymbol) {
|
---|
103 | ISymbolicExpressionTreeNode rootNode = rootSymbol.CreateTreeNode();
|
---|
104 | if (rootNode.HasLocalParameters)
|
---|
105 | rootNode.ResetLocalParameters(random);
|
---|
106 | ISymbolicExpressionTreeNode startNode = startSymbol.CreateTreeNode();
|
---|
107 | if (startNode.HasLocalParameters)
|
---|
108 | startNode.ResetLocalParameters(random);
|
---|
109 | rootNode.AddSubtree(startNode);
|
---|
110 | startNode.AddSubtree(node);
|
---|
111 | return new SymbolicExpressionTree(rootNode);
|
---|
112 | }
|
---|
113 |
|
---|
114 | protected IEnumerable<int> GenerateRowsToEvaluate() {
|
---|
115 | return GenerateRowsToEvaluate(RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value);
|
---|
116 | }
|
---|
117 |
|
---|
118 | protected IEnumerable<int> GenerateRowsToEvaluate(double percentageOfRows) {
|
---|
119 | IEnumerable<int> rows;
|
---|
120 | int samplesStart = EvaluationPartitionParameter.ActualValue.Start;
|
---|
121 | int samplesEnd = EvaluationPartitionParameter.ActualValue.End;
|
---|
122 | int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start;
|
---|
123 | int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End;
|
---|
124 |
|
---|
125 | if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
|
---|
126 |
|
---|
127 | if (percentageOfRows.IsAlmost(1.0))
|
---|
128 | rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
|
---|
129 | else {
|
---|
130 | int seed = RandomParameter.ActualValue.Next();
|
---|
131 | int count = (int)((samplesEnd - samplesStart) * percentageOfRows);
|
---|
132 | if (count == 0) count = 1;
|
---|
133 | rows = RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count);
|
---|
134 | }
|
---|
135 |
|
---|
136 | return rows.Where(i => i < testPartitionStart || testPartitionEnd <= i);
|
---|
137 | }
|
---|
138 | }
|
---|
139 | }
|
---|