Free cookie consent management tool by TermsFeed Policy Generator

source: branches/gp-crossover/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs @ 7317

Last change on this file since 7317 was 6740, checked in by mkommend, 13 years ago

#1597, #1609, #1640:

  • Corrected TableFileParser to handle empty rows correctly.
  • Refactored DataSet to store values in List<List> instead of a two-dimensional array.
  • Enable importing and storing string and datetime values.
  • Changed data access methods in dataset and adapted all concerning classes.
  • Changed interpreter to store the variable values for all rows during the compilation step.
File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
30  [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic regression solution.")]
31  [StorableClass]
32  public class SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
33    [StorableConstructor]
34    protected SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
35    protected SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner)
36      : base(original, cloner) {
37    }
38    public override IDeepCloneable Clone(Cloner cloner) {
39      return new SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);
40    }
41
42    public SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator() : base() { }
43
44    public override bool Maximization { get { return false; } }
45
46    public override IOperation Apply() {
47      var solution = SymbolicExpressionTreeParameter.ActualValue;
48      IEnumerable<int> rows = GenerateRowsToEvaluate();
49
50      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
51      QualityParameter.ActualValue = new DoubleValue(quality);
52
53      return base.Apply();
54    }
55
56    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
57      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
58      IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
59      IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
60      OnlineCalculatorError errorState;
61      double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState);
62      if (errorState != OnlineCalculatorError.None) return double.NaN;
63      else return mse;
64    }
65
66    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
67      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
68      EstimationLimitsParameter.ExecutionContext = context;
69
70      double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
71
72
73      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
74      EstimationLimitsParameter.ExecutionContext = null;
75
76      return mse;
77    }
78  }
79}
Note: See TracBrowser for help on using the repository browser.