Free cookie consent management tool by TermsFeed Policy Generator

source: branches/dataset-ids-2695/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TreeMatching/SymbolicExpressionTreePhenotypicSimilarityCalculator.cs @ 15296

Last change on this file since 15296 was 14354, checked in by bburlacu, 8 years ago

#2685: Revert accidental commit.

File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Optimization.Operators;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
31  [Item("SymbolicExpressionTreePhenotypicSimilarityCalculator", "An operator that calculates the similarity betweeon two trees based on the correlation of their outputs.")]
32  [StorableClass]
33  public class SymbolicExpressionTreePhenotypicSimilarityCalculator : SolutionSimilarityCalculator {
34    [Storable]
35    public IDataAnalysisProblemData ProblemData { get; set; }
36    [Storable]
37    public ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter { get; set; }
38
39    protected override bool IsCommutative { get { return true; } }
40
41    [StorableConstructor]
42    protected SymbolicExpressionTreePhenotypicSimilarityCalculator(bool deserializing) : base(deserializing) { }
43
44    public SymbolicExpressionTreePhenotypicSimilarityCalculator(SymbolicExpressionTreePhenotypicSimilarityCalculator original, Cloner cloner)
45      : base(original, cloner) {
46      this.ProblemData = cloner.Clone(original.ProblemData);
47      this.Interpreter = cloner.Clone(original.Interpreter);
48    }
49
50    public override IDeepCloneable Clone(Cloner cloner) {
51      return new SymbolicExpressionTreePhenotypicSimilarityCalculator(this, cloner);
52    }
53
54    public SymbolicExpressionTreePhenotypicSimilarityCalculator() { }
55
56    public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
57      if (Interpreter == null || ProblemData == null)
58        throw new InvalidOperationException("Cannot calculate phenotypic similarity when no interpreter or problem data were set.");
59
60      var v1 = Interpreter.GetSymbolicExpressionTreeValues(t1, ProblemData.Dataset, ProblemData.TrainingIndices);
61      var v2 = Interpreter.GetSymbolicExpressionTreeValues(t2, ProblemData.Dataset, ProblemData.TrainingIndices);
62
63      if (v1.Variance().IsAlmost(0) && v2.Variance().IsAlmost(0))
64        return 1.0;
65
66      OnlineCalculatorError error;
67      var r = OnlinePearsonsRCalculator.Calculate(v1, v2, out error);
68
69      var r2 = error == OnlineCalculatorError.None ? r * r : 0;
70
71      if (r2 > 1.0)
72        r2 = 1.0;
73
74      return r2;
75    }
76
77    public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) {
78      if (leftSolution == rightSolution)
79        return 1.0;
80
81      if (!leftSolution.Variables.ContainsKey("EstimatedValues") || !rightSolution.Variables.ContainsKey("EstimatedValues"))
82        throw new ArgumentException("No estimated values are present in the subscopes.");
83
84      var leftValues = (DoubleArray)leftSolution.Variables["EstimatedValues"].Value;
85      var rightValues = (DoubleArray)rightSolution.Variables["EstimatedValues"].Value;
86
87      if (leftValues.Variance().IsAlmost(0) && rightValues.Variance().IsAlmost(0))
88        return 1.0;
89
90      OnlineCalculatorError error;
91      var r = OnlinePearsonsRCalculator.Calculate(leftValues, rightValues, out error);
92
93      var r2 = error == OnlineCalculatorError.None ? r * r : 0;
94
95      if (r2 > 1.0)
96        r2 = 1.0;
97
98      return r2;
99    }
100  }
101}
Note: See TracBrowser for help on using the repository browser.