[12911] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Diagnostics.Contracts;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.GeneticProgramming.ArtificialAnt {
|
---|
| 35 | [Item("Artificial Ant Problem", "Represents the Artificial Ant problem.")]
|
---|
| 36 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 170)]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public sealed class Problem : SymbolicExpressionTreeProblem, IStorableContent {
|
---|
| 39 |
|
---|
| 40 | #region constant for default world (Santa Fe)
|
---|
| 41 |
|
---|
| 42 | private static readonly char[][] santaFeAntTrail = new[] {
|
---|
| 43 | " ### ".ToCharArray(),
|
---|
| 44 | " # ".ToCharArray(),
|
---|
| 45 | " # .###.. ".ToCharArray(),
|
---|
| 46 | " # # # ".ToCharArray(),
|
---|
| 47 | " # # # ".ToCharArray(),
|
---|
| 48 | " ####.##### .##.. . ".ToCharArray(),
|
---|
| 49 | " # . # ".ToCharArray(),
|
---|
| 50 | " # # . ".ToCharArray(),
|
---|
| 51 | " # # . ".ToCharArray(),
|
---|
| 52 | " # # # ".ToCharArray(),
|
---|
| 53 | " . # . ".ToCharArray(),
|
---|
| 54 | " # . . ".ToCharArray(),
|
---|
| 55 | " # . # ".ToCharArray(),
|
---|
| 56 | " # # . ".ToCharArray(),
|
---|
| 57 | " # # ...###. ".ToCharArray(),
|
---|
| 58 | " . .#... # ".ToCharArray(),
|
---|
| 59 | " . . . ".ToCharArray(),
|
---|
| 60 | " # . . ".ToCharArray(),
|
---|
| 61 | " # # .#... ".ToCharArray(),
|
---|
| 62 | " # # # ".ToCharArray(),
|
---|
| 63 | " # # . ".ToCharArray(),
|
---|
| 64 | " # # . ".ToCharArray(),
|
---|
| 65 | " # . ...#. ".ToCharArray(),
|
---|
| 66 | " # . # ".ToCharArray(),
|
---|
| 67 | " ..##..#####. # ".ToCharArray(),
|
---|
| 68 | " # # ".ToCharArray(),
|
---|
| 69 | " # # ".ToCharArray(),
|
---|
| 70 | " # .#######.. ".ToCharArray(),
|
---|
| 71 | " # # ".ToCharArray(),
|
---|
| 72 | " . # ".ToCharArray(),
|
---|
| 73 | " .####.. ".ToCharArray(),
|
---|
| 74 | " ".ToCharArray()
|
---|
| 75 | };
|
---|
| 76 |
|
---|
| 77 |
|
---|
| 78 | #endregion
|
---|
| 79 |
|
---|
| 80 | #region Parameter Properties
|
---|
| 81 | public IValueParameter<BoolMatrix> WorldParameter {
|
---|
| 82 | get { return (IValueParameter<BoolMatrix>)Parameters["World"]; }
|
---|
| 83 | }
|
---|
| 84 | public IValueParameter<IntValue> MaxTimeStepsParameter {
|
---|
| 85 | get { return (IValueParameter<IntValue>)Parameters["MaximumTimeSteps"]; }
|
---|
| 86 | }
|
---|
| 87 | #endregion
|
---|
| 88 |
|
---|
| 89 | #region Properties
|
---|
| 90 | public BoolMatrix World {
|
---|
| 91 | get { return WorldParameter.Value; }
|
---|
| 92 | set { WorldParameter.Value = value; }
|
---|
| 93 | }
|
---|
| 94 | public IntValue MaxTimeSteps {
|
---|
| 95 | get { return MaxTimeStepsParameter.Value; }
|
---|
| 96 | set { MaxTimeStepsParameter.Value = value; }
|
---|
| 97 | }
|
---|
| 98 | #endregion
|
---|
| 99 |
|
---|
| 100 | public override bool Maximization {
|
---|
| 101 | get { return true; }
|
---|
| 102 | }
|
---|
| 103 |
|
---|
[14029] | 104 | #region item cloning and persistence
|
---|
| 105 | // persistence
|
---|
| 106 | [StorableConstructor]
|
---|
| 107 | private Problem(bool deserializing) : base(deserializing) { }
|
---|
| 108 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 109 | private void AfterDeserialization() { }
|
---|
| 110 |
|
---|
| 111 | // cloning
|
---|
| 112 | private Problem(Problem original, Cloner cloner) : base(original, cloner) { }
|
---|
| 113 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 114 | return new Problem(this, cloner);
|
---|
| 115 | }
|
---|
| 116 | #endregion
|
---|
| 117 |
|
---|
[12911] | 118 | public Problem()
|
---|
| 119 | : base() {
|
---|
| 120 | BoolMatrix world = new BoolMatrix(ToBoolMatrix(santaFeAntTrail));
|
---|
| 121 | Parameters.Add(new ValueParameter<BoolMatrix>("World", "The world for the artificial ant with scattered food items.", world));
|
---|
| 122 | Parameters.Add(new ValueParameter<IntValue>("MaximumTimeSteps", "The number of time steps the artificial ant has available to collect all food items.", new IntValue(600)));
|
---|
| 123 |
|
---|
| 124 | base.BestKnownQuality = 89;
|
---|
| 125 | var g = new SimpleSymbolicExpressionGrammar();
|
---|
| 126 | g.AddSymbols(new string[] { "IfFoodAhead", "Prog2" }, 2, 2);
|
---|
| 127 | g.AddSymbols(new string[] { "Prog3" }, 3, 3);
|
---|
[14029] | 128 | g.AddTerminalSymbols(new string[] { "Move", "Left", "Right" });
|
---|
[12911] | 129 | base.Encoding = new SymbolicExpressionTreeEncoding(g, 20, 10);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
|
---|
| 134 | var interpreter = new Interpreter(tree, World, MaxTimeSteps.Value);
|
---|
| 135 | interpreter.Run();
|
---|
| 136 | return interpreter.FoodEaten;
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) {
|
---|
| 140 | const string bestSolutionResultName = "Best Solution";
|
---|
| 141 | var bestQuality = Maximization ? qualities.Max() : qualities.Min();
|
---|
| 142 | var bestIdx = Array.IndexOf(qualities, bestQuality);
|
---|
| 143 |
|
---|
| 144 | if (!results.ContainsKey(bestSolutionResultName)) {
|
---|
| 145 | results.Add(new Result(bestSolutionResultName, new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx])));
|
---|
| 146 | } else if (((Solution)(results[bestSolutionResultName].Value)).Quality < qualities[bestIdx]) {
|
---|
| 147 | results[bestSolutionResultName].Value = new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx]);
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | #region helpers
|
---|
| 152 | private bool[,] ToBoolMatrix(char[][] ch) {
|
---|
| 153 | var rows = ch.Length;
|
---|
| 154 | var cols = ch[0].Length;
|
---|
| 155 | var b = new bool[rows, cols];
|
---|
| 156 | for (int r = 0; r < rows; r++) {
|
---|
| 157 | Contract.Assert(ch[r].Length == cols); // all rows must have the same number of columns
|
---|
| 158 | for (int c = 0; c < cols; c++) {
|
---|
| 159 | b[r, c] = ch[r][c] == '#';
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | return b;
|
---|
| 163 | }
|
---|
| 164 | #endregion
|
---|
| 165 | }
|
---|
| 166 | }
|
---|