Free cookie consent management tool by TermsFeed Policy Generator

source: branches/crossvalidation-2434/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs @ 14728

Last change on this file since 14728 was 14029, checked in by gkronber, 8 years ago

#2434: merged trunk changes r12934:14026 from trunk to branch

File size: 10.0 KB
RevLine 
[6589]1#region License Information
2/* HeuristicLab
[12012]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[6589]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Data;
26using HeuristicLab.Optimization;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[14029]28using HeuristicLab.Problems.DataAnalysis.OnlineCalculators;
[6589]29
30namespace HeuristicLab.Problems.DataAnalysis {
31  [StorableClass]
32  public abstract class ClassificationSolutionBase : DataAnalysisSolution, IClassificationSolution {
33    private const string TrainingAccuracyResultName = "Accuracy (training)";
34    private const string TestAccuracyResultName = "Accuracy (test)";
[6913]35    private const string TrainingNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (training)";
36    private const string TestNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (test)";
[11763]37    private const string ClassificationPerformanceMeasuresResultName = "Classification Performance Measures";
[6589]38
39    public new IClassificationModel Model {
40      get { return (IClassificationModel)base.Model; }
41      protected set { base.Model = value; }
42    }
43
44    public new IClassificationProblemData ProblemData {
45      get { return (IClassificationProblemData)base.ProblemData; }
[6653]46      set { base.ProblemData = value; }
[6589]47    }
48
49    #region Results
50    public double TrainingAccuracy {
51      get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
52      private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
53    }
54    public double TestAccuracy {
55      get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
56      private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
57    }
[6913]58    public double TrainingNormalizedGiniCoefficient {
59      get { return ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value; }
60      protected set { ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value = value; }
61    }
62    public double TestNormalizedGiniCoefficient {
63      get { return ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value; }
64      protected set { ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value = value; }
65    }
[11763]66    public ClassificationPerformanceMeasuresResultCollection ClassificationPerformanceMeasures {
67      get { return ((ClassificationPerformanceMeasuresResultCollection)this[ClassificationPerformanceMeasuresResultName].Value); }
68      protected set { (this[ClassificationPerformanceMeasuresResultName].Value) = value; }
69    }
[6589]70    #endregion
71
72    [StorableConstructor]
73    protected ClassificationSolutionBase(bool deserializing) : base(deserializing) { }
74    protected ClassificationSolutionBase(ClassificationSolutionBase original, Cloner cloner)
75      : base(original, cloner) {
76    }
77    protected ClassificationSolutionBase(IClassificationModel model, IClassificationProblemData problemData)
78      : base(model, problemData) {
79      Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
80      Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
[6913]81      Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
82      Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
[11763]83      Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n
84                              In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.",
85                            new ClassificationPerformanceMeasuresResultCollection()));
[6589]86    }
87
[7011]88    [StorableHook(HookType.AfterDeserialization)]
89    private void AfterDeserialization() {
90      if (!this.ContainsKey(TrainingNormalizedGiniCoefficientResultName))
91        Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
92      if (!this.ContainsKey(TestNormalizedGiniCoefficientResultName))
93        Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
[11763]94      if (!this.ContainsKey(ClassificationPerformanceMeasuresResultName)) {
95        Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n
96                              In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.",
97                              new ClassificationPerformanceMeasuresResultCollection()));
[11766]98        CalculateClassificationResults();
[11763]99      }
[7011]100    }
101
[8723]102    protected void CalculateClassificationResults() {
[6589]103      double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
[8139]104      double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray();
[11763]105
[6589]106      double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
[8139]107      double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray();
[6589]108
[11766]109      var positiveClassName = ProblemData.PositiveClass;
[11763]110      double positiveClassValue = ProblemData.GetClassValue(positiveClassName);
111      ClassificationPerformanceMeasuresCalculator trainingPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, positiveClassValue);
112      ClassificationPerformanceMeasuresCalculator testPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, positiveClassValue);
113
[6589]114      OnlineCalculatorError errorState;
[6961]115      double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
[6589]116      if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
[6961]117      double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
[6589]118      if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
119
120      TrainingAccuracy = trainingAccuracy;
121      TestAccuracy = testAccuracy;
[6913]122
123      double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
124      if (errorState != OnlineCalculatorError.None) trainingNormalizedGini = double.NaN;
125      double testNormalizedGini = NormalizedGiniCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
126      if (errorState != OnlineCalculatorError.None) testNormalizedGini = double.NaN;
127
128      TrainingNormalizedGiniCoefficient = trainingNormalizedGini;
129      TestNormalizedGiniCoefficient = testNormalizedGini;
[11763]130
[14029]131      ClassificationPerformanceMeasures.Reset();
132
[11763]133      trainingPerformanceCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues);
134      if (trainingPerformanceCalculator.ErrorState == OnlineCalculatorError.None)
135        ClassificationPerformanceMeasures.SetTrainingResults(trainingPerformanceCalculator);
136
137      testPerformanceCalculator.Calculate(originalTestClassValues, estimatedTestClassValues);
138      if (testPerformanceCalculator.ErrorState == OnlineCalculatorError.None)
139        ClassificationPerformanceMeasures.SetTestResults(testPerformanceCalculator);
[14029]140
141      if (ProblemData.Classes == 2) {
142        var f1Training = FOneScoreCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
143        if (errorState == OnlineCalculatorError.None) ClassificationPerformanceMeasures.TrainingF1Score = f1Training;
144        var f1Test = FOneScoreCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
145        if (errorState == OnlineCalculatorError.None) ClassificationPerformanceMeasures.TestF1Score = f1Test;
146      }
147
148      var mccTraining = MatthewsCorrelationCoefficientCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
149      if (errorState == OnlineCalculatorError.None) ClassificationPerformanceMeasures.TrainingMatthewsCorrelation = mccTraining;
150      var mccTest = MatthewsCorrelationCoefficientCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
151      if (errorState == OnlineCalculatorError.None) ClassificationPerformanceMeasures.TestMatthewsCorrelation = mccTest;
[6589]152    }
153
154    public abstract IEnumerable<double> EstimatedClassValues { get; }
155    public abstract IEnumerable<double> EstimatedTrainingClassValues { get; }
156    public abstract IEnumerable<double> EstimatedTestClassValues { get; }
157
158    public abstract IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows);
[8723]159
160    protected override void RecalculateResults() {
161      CalculateClassificationResults();
162    }
[6589]163  }
164}
Note: See TracBrowser for help on using the repository browser.