[5571] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5571] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[6740] | 26 | using HeuristicLab.Data;
|
---|
[5571] | 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[6740] | 28 | using HeuristicLab.Parameters;
|
---|
[5571] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
|
---|
[14029] | 34 | public class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem,
|
---|
| 35 | ISymbolicDataAnalysisExpressionTreeInterpreter {
|
---|
[5749] | 36 | private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
|
---|
[14029] | 37 | private const string CheckExpressionsWithIntervalArithmeticParameterDescription = "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.";
|
---|
[7615] | 38 | private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
|
---|
[5571] | 39 |
|
---|
[14029] | 40 | public override bool CanChangeName {
|
---|
| 41 | get { return false; }
|
---|
| 42 | }
|
---|
[5571] | 43 |
|
---|
[14029] | 44 | public override bool CanChangeDescription {
|
---|
| 45 | get { return false; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
[5749] | 48 | #region parameter properties
|
---|
[14029] | 49 | public IFixedValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {
|
---|
| 50 | get { return (IFixedValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
|
---|
[5749] | 51 | }
|
---|
[7615] | 52 |
|
---|
[14029] | 53 | public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
| 54 | get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
|
---|
[7615] | 55 | }
|
---|
[5749] | 56 | #endregion
|
---|
| 57 |
|
---|
| 58 | #region properties
|
---|
[14029] | 59 | public bool CheckExpressionsWithIntervalArithmetic {
|
---|
| 60 | get { return CheckExpressionsWithIntervalArithmeticParameter.Value.Value; }
|
---|
| 61 | set { CheckExpressionsWithIntervalArithmeticParameter.Value.Value = value; }
|
---|
[5749] | 62 | }
|
---|
[7615] | 63 |
|
---|
[14029] | 64 | public int EvaluatedSolutions {
|
---|
| 65 | get { return EvaluatedSolutionsParameter.Value.Value; }
|
---|
| 66 | set { EvaluatedSolutionsParameter.Value.Value = value; }
|
---|
[7615] | 67 | }
|
---|
[5749] | 68 | #endregion
|
---|
| 69 |
|
---|
[5571] | 70 | [StorableConstructor]
|
---|
[8436] | 71 | protected SymbolicDataAnalysisExpressionTreeInterpreter(bool deserializing) : base(deserializing) { }
|
---|
[14029] | 72 |
|
---|
| 73 | protected SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original,
|
---|
| 74 | Cloner cloner)
|
---|
| 75 | : base(original, cloner) { }
|
---|
| 76 |
|
---|
[5571] | 77 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 78 | return new SymbolicDataAnalysisExpressionTreeInterpreter(this, cloner);
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | public SymbolicDataAnalysisExpressionTreeInterpreter()
|
---|
[5749] | 82 | : base("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
|
---|
[14029] | 83 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
|
---|
| 84 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
|
---|
[5571] | 85 | }
|
---|
| 86 |
|
---|
[8436] | 87 | protected SymbolicDataAnalysisExpressionTreeInterpreter(string name, string description)
|
---|
| 88 | : base(name, description) {
|
---|
[14029] | 89 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
|
---|
| 90 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
|
---|
[8436] | 91 | }
|
---|
| 92 |
|
---|
[7615] | 93 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 94 | private void AfterDeserialization() {
|
---|
[14029] | 95 | var evaluatedSolutions = new IntValue(0);
|
---|
| 96 | var checkExpressionsWithIntervalArithmetic = new BoolValue(false);
|
---|
| 97 | if (Parameters.ContainsKey(EvaluatedSolutionsParameterName)) {
|
---|
| 98 | var evaluatedSolutionsParameter = (IValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName];
|
---|
| 99 | evaluatedSolutions = evaluatedSolutionsParameter.Value;
|
---|
| 100 | Parameters.Remove(EvaluatedSolutionsParameterName);
|
---|
| 101 | }
|
---|
| 102 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", evaluatedSolutions));
|
---|
| 103 | if (Parameters.ContainsKey(CheckExpressionsWithIntervalArithmeticParameterName)) {
|
---|
| 104 | var checkExpressionsWithIntervalArithmeticParameter = (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName];
|
---|
| 105 | Parameters.Remove(CheckExpressionsWithIntervalArithmeticParameterName);
|
---|
| 106 | checkExpressionsWithIntervalArithmetic = checkExpressionsWithIntervalArithmeticParameter.Value;
|
---|
| 107 | }
|
---|
| 108 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, checkExpressionsWithIntervalArithmetic));
|
---|
[7615] | 109 | }
|
---|
| 110 |
|
---|
| 111 | #region IStatefulItem
|
---|
| 112 | public void InitializeState() {
|
---|
[14029] | 113 | EvaluatedSolutions = 0;
|
---|
[7615] | 114 | }
|
---|
| 115 |
|
---|
[14029] | 116 | public void ClearState() { }
|
---|
[7615] | 117 | #endregion
|
---|
| 118 |
|
---|
[14029] | 119 | private readonly object syncRoot = new object();
|
---|
| 120 | public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset,
|
---|
| 121 | IEnumerable<int> rows) {
|
---|
| 122 | if (CheckExpressionsWithIntervalArithmetic) {
|
---|
[8436] | 123 | throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
|
---|
[14029] | 124 | }
|
---|
[7120] | 125 |
|
---|
[14029] | 126 | lock (syncRoot) {
|
---|
| 127 | EvaluatedSolutions++; // increment the evaluated solutions counter
|
---|
[9004] | 128 | }
|
---|
[8436] | 129 | var state = PrepareInterpreterState(tree, dataset);
|
---|
| 130 |
|
---|
| 131 | foreach (var rowEnum in rows) {
|
---|
| 132 | int row = rowEnum;
|
---|
| 133 | yield return Evaluate(dataset, ref row, state);
|
---|
| 134 | state.Reset();
|
---|
| 135 | }
|
---|
[7154] | 136 | }
|
---|
| 137 |
|
---|
[12509] | 138 | private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset) {
|
---|
[8436] | 139 | Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
|
---|
[5987] | 140 | int necessaryArgStackSize = 0;
|
---|
[8436] | 141 | foreach (Instruction instr in code) {
|
---|
[6860] | 142 | if (instr.opCode == OpCodes.Variable) {
|
---|
[8436] | 143 | var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
|
---|
[9828] | 144 | instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
|
---|
[5571] | 145 | } else if (instr.opCode == OpCodes.LagVariable) {
|
---|
[8436] | 146 | var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
|
---|
[9828] | 147 | instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
|
---|
[6860] | 148 | } else if (instr.opCode == OpCodes.VariableCondition) {
|
---|
[8436] | 149 | var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
|
---|
[9828] | 150 | instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
|
---|
[5987] | 151 | } else if (instr.opCode == OpCodes.Call) {
|
---|
| 152 | necessaryArgStackSize += instr.nArguments + 1;
|
---|
[5571] | 153 | }
|
---|
| 154 | }
|
---|
[8436] | 155 | return new InterpreterState(code, necessaryArgStackSize);
|
---|
| 156 | }
|
---|
[5571] | 157 |
|
---|
[12509] | 158 | public virtual double Evaluate(IDataset dataset, ref int row, InterpreterState state) {
|
---|
[5571] | 159 | Instruction currentInstr = state.NextInstruction();
|
---|
| 160 | switch (currentInstr.opCode) {
|
---|
| 161 | case OpCodes.Add: {
|
---|
[8436] | 162 | double s = Evaluate(dataset, ref row, state);
|
---|
[5571] | 163 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 164 | s += Evaluate(dataset, ref row, state);
|
---|
[5571] | 165 | }
|
---|
| 166 | return s;
|
---|
| 167 | }
|
---|
| 168 | case OpCodes.Sub: {
|
---|
[8436] | 169 | double s = Evaluate(dataset, ref row, state);
|
---|
[5571] | 170 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 171 | s -= Evaluate(dataset, ref row, state);
|
---|
[5571] | 172 | }
|
---|
[14029] | 173 | if (currentInstr.nArguments == 1) { s = -s; }
|
---|
[5571] | 174 | return s;
|
---|
| 175 | }
|
---|
| 176 | case OpCodes.Mul: {
|
---|
[8436] | 177 | double p = Evaluate(dataset, ref row, state);
|
---|
[5571] | 178 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 179 | p *= Evaluate(dataset, ref row, state);
|
---|
[5571] | 180 | }
|
---|
| 181 | return p;
|
---|
| 182 | }
|
---|
| 183 | case OpCodes.Div: {
|
---|
[8436] | 184 | double p = Evaluate(dataset, ref row, state);
|
---|
[5571] | 185 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 186 | p /= Evaluate(dataset, ref row, state);
|
---|
[5571] | 187 | }
|
---|
[14029] | 188 | if (currentInstr.nArguments == 1) { p = 1.0 / p; }
|
---|
[5571] | 189 | return p;
|
---|
| 190 | }
|
---|
| 191 | case OpCodes.Average: {
|
---|
[8436] | 192 | double sum = Evaluate(dataset, ref row, state);
|
---|
[5571] | 193 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 194 | sum += Evaluate(dataset, ref row, state);
|
---|
[5571] | 195 | }
|
---|
| 196 | return sum / currentInstr.nArguments;
|
---|
| 197 | }
|
---|
| 198 | case OpCodes.Cos: {
|
---|
[8436] | 199 | return Math.Cos(Evaluate(dataset, ref row, state));
|
---|
[5571] | 200 | }
|
---|
| 201 | case OpCodes.Sin: {
|
---|
[8436] | 202 | return Math.Sin(Evaluate(dataset, ref row, state));
|
---|
[5571] | 203 | }
|
---|
| 204 | case OpCodes.Tan: {
|
---|
[8436] | 205 | return Math.Tan(Evaluate(dataset, ref row, state));
|
---|
[5571] | 206 | }
|
---|
[7842] | 207 | case OpCodes.Square: {
|
---|
[8436] | 208 | return Math.Pow(Evaluate(dataset, ref row, state), 2);
|
---|
[7842] | 209 | }
|
---|
[5571] | 210 | case OpCodes.Power: {
|
---|
[8436] | 211 | double x = Evaluate(dataset, ref row, state);
|
---|
| 212 | double y = Math.Round(Evaluate(dataset, ref row, state));
|
---|
[5571] | 213 | return Math.Pow(x, y);
|
---|
| 214 | }
|
---|
[7842] | 215 | case OpCodes.SquareRoot: {
|
---|
[8436] | 216 | return Math.Sqrt(Evaluate(dataset, ref row, state));
|
---|
[7842] | 217 | }
|
---|
[5571] | 218 | case OpCodes.Root: {
|
---|
[8436] | 219 | double x = Evaluate(dataset, ref row, state);
|
---|
| 220 | double y = Math.Round(Evaluate(dataset, ref row, state));
|
---|
[5571] | 221 | return Math.Pow(x, 1 / y);
|
---|
| 222 | }
|
---|
| 223 | case OpCodes.Exp: {
|
---|
[8436] | 224 | return Math.Exp(Evaluate(dataset, ref row, state));
|
---|
[5571] | 225 | }
|
---|
| 226 | case OpCodes.Log: {
|
---|
[8436] | 227 | return Math.Log(Evaluate(dataset, ref row, state));
|
---|
[5571] | 228 | }
|
---|
[7842] | 229 | case OpCodes.Gamma: {
|
---|
[8436] | 230 | var x = Evaluate(dataset, ref row, state);
|
---|
[14029] | 231 | if (double.IsNaN(x)) { return double.NaN; } else { return alglib.gammafunction(x); }
|
---|
[7842] | 232 | }
|
---|
| 233 | case OpCodes.Psi: {
|
---|
[8436] | 234 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 235 | if (double.IsNaN(x)) return double.NaN;
|
---|
[8430] | 236 | else if (x <= 0 && (Math.Floor(x) - x).IsAlmost(0)) return double.NaN;
|
---|
[7842] | 237 | return alglib.psi(x);
|
---|
| 238 | }
|
---|
| 239 | case OpCodes.Dawson: {
|
---|
[8436] | 240 | var x = Evaluate(dataset, ref row, state);
|
---|
[14029] | 241 | if (double.IsNaN(x)) { return double.NaN; }
|
---|
[7842] | 242 | return alglib.dawsonintegral(x);
|
---|
| 243 | }
|
---|
| 244 | case OpCodes.ExponentialIntegralEi: {
|
---|
[8436] | 245 | var x = Evaluate(dataset, ref row, state);
|
---|
[14029] | 246 | if (double.IsNaN(x)) { return double.NaN; }
|
---|
[7842] | 247 | return alglib.exponentialintegralei(x);
|
---|
| 248 | }
|
---|
| 249 | case OpCodes.SineIntegral: {
|
---|
| 250 | double si, ci;
|
---|
[8436] | 251 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 252 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 253 | else {
|
---|
| 254 | alglib.sinecosineintegrals(x, out si, out ci);
|
---|
| 255 | return si;
|
---|
| 256 | }
|
---|
| 257 | }
|
---|
| 258 | case OpCodes.CosineIntegral: {
|
---|
| 259 | double si, ci;
|
---|
[8436] | 260 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 261 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 262 | else {
|
---|
| 263 | alglib.sinecosineintegrals(x, out si, out ci);
|
---|
| 264 | return ci;
|
---|
| 265 | }
|
---|
| 266 | }
|
---|
| 267 | case OpCodes.HyperbolicSineIntegral: {
|
---|
| 268 | double shi, chi;
|
---|
[8436] | 269 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 270 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 271 | else {
|
---|
| 272 | alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
|
---|
| 273 | return shi;
|
---|
| 274 | }
|
---|
| 275 | }
|
---|
| 276 | case OpCodes.HyperbolicCosineIntegral: {
|
---|
| 277 | double shi, chi;
|
---|
[8436] | 278 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 279 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 280 | else {
|
---|
| 281 | alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
|
---|
| 282 | return chi;
|
---|
| 283 | }
|
---|
| 284 | }
|
---|
| 285 | case OpCodes.FresnelCosineIntegral: {
|
---|
| 286 | double c = 0, s = 0;
|
---|
[8436] | 287 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 288 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 289 | else {
|
---|
| 290 | alglib.fresnelintegral(x, ref c, ref s);
|
---|
| 291 | return c;
|
---|
| 292 | }
|
---|
| 293 | }
|
---|
| 294 | case OpCodes.FresnelSineIntegral: {
|
---|
| 295 | double c = 0, s = 0;
|
---|
[8436] | 296 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 297 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 298 | else {
|
---|
| 299 | alglib.fresnelintegral(x, ref c, ref s);
|
---|
| 300 | return s;
|
---|
| 301 | }
|
---|
| 302 | }
|
---|
| 303 | case OpCodes.AiryA: {
|
---|
| 304 | double ai, aip, bi, bip;
|
---|
[8436] | 305 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 306 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 307 | else {
|
---|
| 308 | alglib.airy(x, out ai, out aip, out bi, out bip);
|
---|
| 309 | return ai;
|
---|
| 310 | }
|
---|
| 311 | }
|
---|
| 312 | case OpCodes.AiryB: {
|
---|
| 313 | double ai, aip, bi, bip;
|
---|
[8436] | 314 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 315 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 316 | else {
|
---|
| 317 | alglib.airy(x, out ai, out aip, out bi, out bip);
|
---|
| 318 | return bi;
|
---|
| 319 | }
|
---|
| 320 | }
|
---|
| 321 | case OpCodes.Norm: {
|
---|
[8436] | 322 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 323 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 324 | else return alglib.normaldistribution(x);
|
---|
| 325 | }
|
---|
| 326 | case OpCodes.Erf: {
|
---|
[8436] | 327 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 328 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 329 | else return alglib.errorfunction(x);
|
---|
| 330 | }
|
---|
| 331 | case OpCodes.Bessel: {
|
---|
[8436] | 332 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 333 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 334 | else return alglib.besseli0(x);
|
---|
| 335 | }
|
---|
[5571] | 336 | case OpCodes.IfThenElse: {
|
---|
[8436] | 337 | double condition = Evaluate(dataset, ref row, state);
|
---|
[5571] | 338 | double result;
|
---|
| 339 | if (condition > 0.0) {
|
---|
[8436] | 340 | result = Evaluate(dataset, ref row, state); state.SkipInstructions();
|
---|
[5571] | 341 | } else {
|
---|
[8436] | 342 | state.SkipInstructions(); result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 343 | }
|
---|
| 344 | return result;
|
---|
| 345 | }
|
---|
| 346 | case OpCodes.AND: {
|
---|
[8436] | 347 | double result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 348 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 349 | if (result > 0.0) result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 350 | else {
|
---|
[8436] | 351 | state.SkipInstructions();
|
---|
[5571] | 352 | }
|
---|
| 353 | }
|
---|
[6732] | 354 | return result > 0.0 ? 1.0 : -1.0;
|
---|
[5571] | 355 | }
|
---|
| 356 | case OpCodes.OR: {
|
---|
[8436] | 357 | double result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 358 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 359 | if (result <= 0.0) result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 360 | else {
|
---|
[8436] | 361 | state.SkipInstructions();
|
---|
[5571] | 362 | }
|
---|
| 363 | }
|
---|
| 364 | return result > 0.0 ? 1.0 : -1.0;
|
---|
| 365 | }
|
---|
| 366 | case OpCodes.NOT: {
|
---|
[8436] | 367 | return Evaluate(dataset, ref row, state) > 0.0 ? -1.0 : 1.0;
|
---|
[5571] | 368 | }
|
---|
[10774] | 369 | case OpCodes.XOR: {
|
---|
[10788] | 370 | //mkommend: XOR on multiple inputs is defined as true if the number of positive signals is odd
|
---|
| 371 | // this is equal to a consecutive execution of binary XOR operations.
|
---|
| 372 | int positiveSignals = 0;
|
---|
| 373 | for (int i = 0; i < currentInstr.nArguments; i++) {
|
---|
[14029] | 374 | if (Evaluate(dataset, ref row, state) > 0.0) { positiveSignals++; }
|
---|
[10774] | 375 | }
|
---|
[10788] | 376 | return positiveSignals % 2 != 0 ? 1.0 : -1.0;
|
---|
[10774] | 377 | }
|
---|
[5571] | 378 | case OpCodes.GT: {
|
---|
[8436] | 379 | double x = Evaluate(dataset, ref row, state);
|
---|
| 380 | double y = Evaluate(dataset, ref row, state);
|
---|
[14029] | 381 | if (x > y) { return 1.0; } else { return -1.0; }
|
---|
[5571] | 382 | }
|
---|
| 383 | case OpCodes.LT: {
|
---|
[8436] | 384 | double x = Evaluate(dataset, ref row, state);
|
---|
| 385 | double y = Evaluate(dataset, ref row, state);
|
---|
[14029] | 386 | if (x < y) { return 1.0; } else { return -1.0; }
|
---|
[5571] | 387 | }
|
---|
| 388 | case OpCodes.TimeLag: {
|
---|
| 389 | var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
|
---|
| 390 | row += timeLagTreeNode.Lag;
|
---|
[8436] | 391 | double result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 392 | row -= timeLagTreeNode.Lag;
|
---|
| 393 | return result;
|
---|
| 394 | }
|
---|
| 395 | case OpCodes.Integral: {
|
---|
| 396 | int savedPc = state.ProgramCounter;
|
---|
| 397 | var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
|
---|
| 398 | double sum = 0.0;
|
---|
| 399 | for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) {
|
---|
| 400 | row += Math.Sign(timeLagTreeNode.Lag);
|
---|
[8436] | 401 | sum += Evaluate(dataset, ref row, state);
|
---|
[5571] | 402 | state.ProgramCounter = savedPc;
|
---|
| 403 | }
|
---|
| 404 | row -= timeLagTreeNode.Lag;
|
---|
[8436] | 405 | sum += Evaluate(dataset, ref row, state);
|
---|
[5571] | 406 | return sum;
|
---|
| 407 | }
|
---|
| 408 |
|
---|
| 409 | //mkommend: derivate calculation taken from:
|
---|
| 410 | //http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
|
---|
| 411 | //one sided smooth differentiatior, N = 4
|
---|
| 412 | // y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4)
|
---|
| 413 | case OpCodes.Derivative: {
|
---|
| 414 | int savedPc = state.ProgramCounter;
|
---|
[8436] | 415 | double f_0 = Evaluate(dataset, ref row, state); row--;
|
---|
[5571] | 416 | state.ProgramCounter = savedPc;
|
---|
[8436] | 417 | double f_1 = Evaluate(dataset, ref row, state); row -= 2;
|
---|
[5571] | 418 | state.ProgramCounter = savedPc;
|
---|
[8436] | 419 | double f_3 = Evaluate(dataset, ref row, state); row--;
|
---|
[5571] | 420 | state.ProgramCounter = savedPc;
|
---|
[8436] | 421 | double f_4 = Evaluate(dataset, ref row, state);
|
---|
[5571] | 422 | row += 4;
|
---|
| 423 |
|
---|
| 424 | return (f_0 + 2 * f_1 - 2 * f_3 - f_4) / 8; // h = 1
|
---|
| 425 | }
|
---|
| 426 | case OpCodes.Call: {
|
---|
| 427 | // evaluate sub-trees
|
---|
| 428 | double[] argValues = new double[currentInstr.nArguments];
|
---|
| 429 | for (int i = 0; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 430 | argValues[i] = Evaluate(dataset, ref row, state);
|
---|
[5571] | 431 | }
|
---|
| 432 | // push on argument values on stack
|
---|
| 433 | state.CreateStackFrame(argValues);
|
---|
| 434 |
|
---|
| 435 | // save the pc
|
---|
| 436 | int savedPc = state.ProgramCounter;
|
---|
| 437 | // set pc to start of function
|
---|
[9828] | 438 | state.ProgramCounter = (ushort)currentInstr.data;
|
---|
[5571] | 439 | // evaluate the function
|
---|
[8436] | 440 | double v = Evaluate(dataset, ref row, state);
|
---|
[5571] | 441 |
|
---|
| 442 | // delete the stack frame
|
---|
| 443 | state.RemoveStackFrame();
|
---|
| 444 |
|
---|
| 445 | // restore the pc => evaluation will continue at point after my subtrees
|
---|
| 446 | state.ProgramCounter = savedPc;
|
---|
| 447 | return v;
|
---|
| 448 | }
|
---|
| 449 | case OpCodes.Arg: {
|
---|
[9828] | 450 | return state.GetStackFrameValue((ushort)currentInstr.data);
|
---|
[5571] | 451 | }
|
---|
| 452 | case OpCodes.Variable: {
|
---|
[8486] | 453 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
[6740] | 454 | var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
|
---|
[9828] | 455 | return ((IList<double>)currentInstr.data)[row] * variableTreeNode.Weight;
|
---|
[5571] | 456 | }
|
---|
| 457 | case OpCodes.LagVariable: {
|
---|
[6740] | 458 | var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
|
---|
[5571] | 459 | int actualRow = row + laggedVariableTreeNode.Lag;
|
---|
[14029] | 460 | if (actualRow < 0 || actualRow >= dataset.Rows) { return double.NaN; }
|
---|
[9828] | 461 | return ((IList<double>)currentInstr.data)[actualRow] * laggedVariableTreeNode.Weight;
|
---|
[5571] | 462 | }
|
---|
| 463 | case OpCodes.Constant: {
|
---|
[8436] | 464 | var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
|
---|
[5897] | 465 | return constTreeNode.Value;
|
---|
[5571] | 466 | }
|
---|
| 467 |
|
---|
| 468 | //mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) )
|
---|
| 469 | //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
|
---|
| 470 | case OpCodes.VariableCondition: {
|
---|
[8486] | 471 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
[5571] | 472 | var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode;
|
---|
[9828] | 473 | double variableValue = ((IList<double>)currentInstr.data)[row];
|
---|
[5897] | 474 | double x = variableValue - variableConditionTreeNode.Threshold;
|
---|
[5571] | 475 | double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
|
---|
| 476 |
|
---|
[8436] | 477 | double trueBranch = Evaluate(dataset, ref row, state);
|
---|
| 478 | double falseBranch = Evaluate(dataset, ref row, state);
|
---|
[5571] | 479 |
|
---|
| 480 | return trueBranch * p + falseBranch * (1 - p);
|
---|
| 481 | }
|
---|
[14029] | 482 | default:
|
---|
| 483 | throw new NotSupportedException();
|
---|
[5571] | 484 | }
|
---|
| 485 | }
|
---|
| 486 | }
|
---|
[14029] | 487 | } |
---|