Free cookie consent management tool by TermsFeed Policy Generator

source: branches/crossvalidation-2434/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/PearsonRSquaredTreeComplexityEvaluator.cs @ 14648

Last change on this file since 14648 was 14029, checked in by gkronber, 8 years ago

#2434: merged trunk changes r12934:14026 from trunk to branch

File size: 4.8 KB
RevLine 
[5505]1#region License Information
2/* HeuristicLab
[13241]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5505]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[12147]22using System;
[5505]23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
[5618]30namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
[10750]31  [Item("Pearson R² & Tree Complexity Evaluator", "Calculates the Pearson R² and the tree complexity of a symbolic regression solution.")]
[5505]32  [StorableClass]
[11883]33  public class PearsonRSquaredTreeComplexityEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
[5505]34    [StorableConstructor]
[11883]35    protected PearsonRSquaredTreeComplexityEvaluator(bool deserializing) : base(deserializing) { }
36    protected PearsonRSquaredTreeComplexityEvaluator(PearsonRSquaredTreeComplexityEvaluator original, Cloner cloner)
[5505]37      : base(original, cloner) {
38    }
39    public override IDeepCloneable Clone(Cloner cloner) {
[11883]40      return new PearsonRSquaredTreeComplexityEvaluator(this, cloner);
[5505]41    }
42
[12848]43    public PearsonRSquaredTreeComplexityEvaluator() : base() { }
[11310]44
[13300]45    public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } } // maximize R² and minimize model complexity
[5514]46
[10291]47    public override IOperation InstrumentedApply() {
[5505]48      IEnumerable<int> rows = GenerateRowsToEvaluate();
[5851]49      var solution = SymbolicExpressionTreeParameter.ActualValue;
[11310]50      var problemData = ProblemDataParameter.ActualValue;
51      var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
52      var estimationLimits = EstimationLimitsParameter.ActualValue;
53      var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
54
55      if (UseConstantOptimization) {
[13670]56        SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, ConstantOptimizationIterations, updateVariableWeights: ConstantOptimizationUpdateVariableWeights, lowerEstimationLimit: estimationLimits.Lower, upperEstimationLimit: estimationLimits.Upper);
[11310]57      }
[12848]58      double[] qualities = Calculate(interpreter, solution, estimationLimits.Lower, estimationLimits.Upper, problemData, rows, applyLinearScaling, DecimalPlaces);
[5505]59      QualitiesParameter.ActualValue = new DoubleArray(qualities);
[10291]60      return base.InstrumentedApply();
[5505]61    }
62
[12848]63    public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling, int decimalPlaces) {
[11310]64      double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
[12848]65      if (decimalPlaces >= 0)
66        r2 = Math.Round(r2, decimalPlaces);
[13221]67      return new double[2] { r2, SymbolicDataAnalysisModelComplexityCalculator.CalculateComplexity(solution) };
[5505]68    }
[5613]69
70    public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
[5722]71      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
[5770]72      EstimationLimitsParameter.ExecutionContext = context;
[8664]73      ApplyLinearScalingParameter.ExecutionContext = context;
[13300]74      // DecimalPlaces parameter is a FixedValueParameter and doesn't need the context.
[5722]75
[12848]76      double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
[5722]77
78      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
[5770]79      EstimationLimitsParameter.ExecutionContext = null;
[8664]80      ApplyLinearScalingParameter.ExecutionContext = null;
[5722]81
82      return quality;
[5613]83    }
[5505]84  }
85}
Note: See TracBrowser for help on using the repository browser.