1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | [Item("OneR Classification Model", "A model that uses intervals for one variable to determine the class.")]
|
---|
33 | public class OneRClassificationModel : ClassificationModel {
|
---|
34 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
35 | get { return new[] { Variable }; }
|
---|
36 | }
|
---|
37 |
|
---|
38 | [Storable]
|
---|
39 | protected string variable;
|
---|
40 | public string Variable {
|
---|
41 | get { return variable; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | [Storable]
|
---|
45 | protected double[] splits;
|
---|
46 | public double[] Splits {
|
---|
47 | get { return splits; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | [Storable]
|
---|
51 | protected double[] classes;
|
---|
52 | public double[] Classes {
|
---|
53 | get { return classes; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | [Storable]
|
---|
57 | protected double missingValuesClass;
|
---|
58 | public double MissingValuesClass {
|
---|
59 | get { return missingValuesClass; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | [StorableConstructor]
|
---|
63 | protected OneRClassificationModel(bool deserializing) : base(deserializing) { }
|
---|
64 | protected OneRClassificationModel(OneRClassificationModel original, Cloner cloner)
|
---|
65 | : base(original, cloner) {
|
---|
66 | this.variable = (string)original.variable;
|
---|
67 | this.splits = (double[])original.splits.Clone();
|
---|
68 | this.classes = (double[])original.classes.Clone();
|
---|
69 | }
|
---|
70 | public override IDeepCloneable Clone(Cloner cloner) { return new OneRClassificationModel(this, cloner); }
|
---|
71 |
|
---|
72 | public OneRClassificationModel(string targetVariable, string variable, double[] splits, double[] classes, double missingValuesClass = double.NaN)
|
---|
73 | : base(targetVariable) {
|
---|
74 | if (splits.Length != classes.Length) {
|
---|
75 | throw new ArgumentException("Number of splits and classes has to be equal.");
|
---|
76 | }
|
---|
77 | if (!Double.IsPositiveInfinity(splits[splits.Length - 1])) {
|
---|
78 | throw new ArgumentException("Last split has to be double.PositiveInfinity, so that all values are covered.");
|
---|
79 | }
|
---|
80 | this.name = ItemName;
|
---|
81 | this.description = ItemDescription;
|
---|
82 | this.variable = variable;
|
---|
83 | this.splits = splits;
|
---|
84 | this.classes = classes;
|
---|
85 | this.missingValuesClass = missingValuesClass;
|
---|
86 | }
|
---|
87 |
|
---|
88 | // uses sorting to return the values in the order of rows, instead of using nested for loops
|
---|
89 | // to avoid O(n²) runtime
|
---|
90 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
91 | var values = dataset.GetDoubleValues(Variable, rows).ToArray();
|
---|
92 | var rowsArray = rows.ToArray();
|
---|
93 | var order = Enumerable.Range(0, rowsArray.Length).ToArray();
|
---|
94 | double[] estimated = new double[rowsArray.Length];
|
---|
95 | Array.Sort(rowsArray, order);
|
---|
96 | Array.Sort(values, rowsArray);
|
---|
97 | int curSplit = 0, curIndex = 0;
|
---|
98 | while (curIndex < values.Length && Double.IsNaN(values[curIndex])) {
|
---|
99 | estimated[curIndex] = MissingValuesClass;
|
---|
100 | curIndex++;
|
---|
101 | }
|
---|
102 | while (curSplit < Splits.Length) {
|
---|
103 | while (curIndex < values.Length && Splits[curSplit] > values[curIndex]) {
|
---|
104 | estimated[curIndex] = classes[curSplit];
|
---|
105 | curIndex++;
|
---|
106 | }
|
---|
107 | curSplit++;
|
---|
108 | }
|
---|
109 | Array.Sort(rowsArray, estimated);
|
---|
110 | Array.Sort(order, estimated);
|
---|
111 | return estimated;
|
---|
112 | }
|
---|
113 |
|
---|
114 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
115 | return new OneRClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
116 | }
|
---|
117 |
|
---|
118 | }
|
---|
119 | }
|
---|