Free cookie consent management tool by TermsFeed Policy Generator

source: branches/XmlTextReaderBranch/HeuristicLab.DataAnalysis/Dataset.cs @ 297

Last change on this file since 297 was 122, checked in by gkronber, 17 years ago

bug fixes to make loading of OSGA-TSP work. Some non-working code remains

File size: 10.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Xml;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using System.Globalization;
28using System.Text;
29
30namespace HeuristicLab.DataAnalysis {
31  public class Dataset : ItemBase {
32
33    private string name;
34    public string Name {
35      get { return name; }
36      set { name = value; }
37    }
38
39    private double[] samples;
40    private int rows;
41
42    public int Rows {
43      get { return rows; }
44      set { rows = value; }
45    }
46    private int columns;
47
48    public int Columns {
49      get { return columns; }
50      set { columns = value; }
51    }
52    private Dictionary<int, double[]>[] ranges;
53    private Dictionary<int, double[]>[] means;
54
55    public double GetValue(int i, int j) {
56      return samples[columns * i + j];
57    }
58
59    public void SetValue(int i, int j, double v) {
60      if(v != samples[columns * i + j]) {
61        samples[columns * i + j] = v;
62        FireChanged();
63      }
64    }
65
66    public double[] Samples {
67      get { return samples; }
68      set {
69        samples = value;
70        CreateDictionaries();
71        FireChanged();
72      }
73    }
74
75    private string[] variableNames;
76    public string[] VariableNames {
77      get { return variableNames; }
78      set { variableNames = value; }
79    }
80
81    public Dataset() {
82      Name = "-";
83      VariableNames = new string[] {"Var0"};
84      Columns = 1;
85      Rows = 1;
86      Samples = new double[1];
87    }
88
89    void samples_Changed(object sender, EventArgs e) {
90      CreateDictionaries();
91    }
92
93    private void CreateDictionaries() {
94      // keep a means and ranges dictionary for each column (possible target variable) of the dataset.
95
96      means = new Dictionary<int, double[]>[columns];
97      ranges = new Dictionary<int, double[]>[columns];
98
99      for(int i = 0; i < columns; i++) {
100        means[i] = new Dictionary<int, double[]>();
101        ranges[i] = new Dictionary<int, double[]>();
102      }
103    }
104
105    public override IView CreateView() {
106      return new DatasetView(this);
107    }
108
109    public override object Clone(IDictionary<Guid, object> clonedObjects) {
110      Dataset clone = new Dataset();
111      clonedObjects.Add(Guid, clone);
112      double[] cloneSamples = new double[rows * columns];
113      Array.Copy(samples, cloneSamples, samples.Length);
114      clone.rows = rows;
115      clone.columns = columns;
116      clone.Samples = cloneSamples;
117      clone.Name = Name;
118      clone.VariableNames = new string[VariableNames.Length];
119      Array.Copy(VariableNames, clone.VariableNames, VariableNames.Length);
120      return clone;
121    }
122
123    public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
124      XmlNode node = base.GetXmlNode(name, document, persistedObjects);
125      XmlAttribute problemName = document.CreateAttribute("Name");
126      problemName.Value = Name;
127      node.Attributes.Append(problemName);
128      XmlAttribute dim1 = document.CreateAttribute("Dimension1");
129      dim1.Value = rows.ToString(CultureInfo.InvariantCulture.NumberFormat);
130      node.Attributes.Append(dim1);
131      XmlAttribute dim2 = document.CreateAttribute("Dimension2");
132      dim2.Value = columns.ToString(CultureInfo.InvariantCulture.NumberFormat);
133      node.Attributes.Append(dim2);
134
135      XmlAttribute variableNames = document.CreateAttribute("VariableNames");
136      variableNames.Value = GetVariableNamesString();
137      node.Attributes.Append(variableNames);
138
139      node.InnerText = ToString(CultureInfo.InvariantCulture.NumberFormat);
140      return node;
141    }
142
143    //public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
144    //  base.Populate(node, restoredObjects);
145    //  Name = node.Attributes["Name"].Value;
146    //  rows = int.Parse(node.Attributes["Dimension1"].Value, CultureInfo.InvariantCulture.NumberFormat);
147    //  columns = int.Parse(node.Attributes["Dimension2"].Value, CultureInfo.InvariantCulture.NumberFormat);
148
149    //  VariableNames = ParseVariableNamesString(node.Attributes["VariableNames"].Value);
150
151    //  string[] tokens = node.InnerText.Split(';');
152    //  if(tokens.Length != rows * columns) throw new FormatException();
153    //  samples = new double[rows * columns];
154    //  for(int row = 0; row < rows; row++) {
155    //    for(int column = 0; column < columns; column++) {
156    //      if(double.TryParse(tokens[row * columns + column], NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out samples[row * columns + column]) == false) {
157    //        throw new FormatException("Can't parse " + tokens[row * columns + column] + " as double value.");
158    //      }
159    //    }
160    //  }
161    //  CreateDictionaries();
162    //}
163    public override void Populate(XmlReader reader, IDictionary<Guid, IStorable> restoredObjects) {
164      base.Populate(reader, restoredObjects);
165      Name = reader["Name"];
166      rows = int.Parse(reader["Dimension1"], CultureInfo.InvariantCulture.NumberFormat);
167      columns = int.Parse(reader["Dimension2"], CultureInfo.InvariantCulture.NumberFormat);
168      VariableNames = ParseVariableNamesString(reader["VariableNames"]);
169      string[] tokens = reader.ReadString().Split(';');
170
171      if(tokens.Length != rows * columns) throw new FormatException();
172      samples = new double[rows * columns];
173      for(int row = 0; row < rows; row++) {
174        for(int column = 0; column < columns; column++) {
175          if(double.TryParse(tokens[row * columns + column], NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out samples[row * columns + column]) == false) {
176            throw new FormatException("Can't parse " + tokens[row * columns + column] + " as double value.");
177          }
178        }
179      }
180      CreateDictionaries();
181    }
182
183    public override string ToString() {
184      return ToString(CultureInfo.CurrentCulture.NumberFormat);
185    }
186
187    private string ToString(NumberFormatInfo format) {
188      StringBuilder builder = new StringBuilder();
189      for(int row = 0; row < rows; row++) {
190        for(int column = 0; column < columns; column++) {
191          builder.Append(";");
192          builder.Append(samples[row*columns+column].ToString(format));
193        }
194      }
195      if(builder.Length > 0) builder.Remove(0, 1);
196      return builder.ToString();
197    }
198
199    private string GetVariableNamesString() {
200      string s = "";
201      for (int i = 0; i < variableNames.Length; i++) {
202        s += variableNames[i] + "; ";
203      }
204
205      if (variableNames.Length > 0) {
206        s = s.TrimEnd(';', ' ');
207      }
208      return s;
209    }
210
211    private string[] ParseVariableNamesString(string p) {
212      p = p.Trim();
213      string[] tokens = p.Split(new char[] {';'}, StringSplitOptions.RemoveEmptyEntries);
214      return tokens;
215    }
216
217
218    // return value of GetMean should be memoized because it is called repeatedly in Evaluators
219    public double GetMean(int column, int from, int to) {
220      Dictionary<int, double[]> columnMeans = means[column];
221      if(columnMeans.ContainsKey(from)) {
222        double[] fromMeans = columnMeans[from];
223        if(fromMeans[to-from] >= 0.0) {
224          // already calculated
225          return fromMeans[to-from];
226        } else {
227          // not yet calculated => calculate
228          fromMeans[to-from] = CalculateMean(column, from, to);
229          return fromMeans[to-from];
230        }
231      } else {
232        // never saw this from-index => create a new array, initialize and recalculate for to-index
233        double[] fromMeans = new double[rows - from];
234        // fill with negative values to indicate which means have already been calculated
235        for(int i=0;i<fromMeans.Length;i++) {fromMeans[i] = -1.0;}
236        // store new array in the dictionary
237        columnMeans[from] = fromMeans;
238        // calculate for specific to-index
239        fromMeans[to-from] = CalculateMean(column, from, to);
240        return fromMeans[to-from];
241      }
242    }
243
244    private double CalculateMean(int column, int from, int to) {
245      double[] values = new double[to - from +1];
246      for(int sample = from; sample <= to; sample++) {
247        values[sample - from] = GetValue(sample, column);
248      }
249
250      return Statistics.Mean(values);
251    }
252
253    // return value of GetRange should be memoized because it is called repeatedly in Evaluators
254    public double GetRange(int column, int from, int to) {
255      Dictionary<int, double[]> columnRanges = ranges[column];
256      if(columnRanges.ContainsKey(from)) {
257        double[] fromRanges = columnRanges[from];
258        if(fromRanges[to-from] >= 0.0) {
259          // already calculated
260          return fromRanges[to-from];
261        } else {
262          // not yet calculated => calculate
263          fromRanges[to-from] = CalculateRange(column, from, to);
264          return fromRanges[to-from];
265        }
266      } else {
267        // never saw this from-index => create a new array, initialize and recalculate for to-index
268        double[] fromRanges = new double[rows - from];
269        // fill with negative values to indicate which means have already been calculated
270        for(int i = 0; i < fromRanges.Length; i++) { fromRanges[i] = -1.0; }
271        // store in dictionary
272        columnRanges[from] = fromRanges;
273        // calculate for specific to-index
274        fromRanges[to-from] = CalculateRange(column, from, to);
275        return fromRanges[to-from];
276      }
277    }
278
279    private double CalculateRange(int column, int from, int to) {
280      double[] values = new double[to - from + 1];
281      for(int sample = from; sample <= to; sample++) {
282        values[sample - from] = GetValue(sample, column);
283      }
284
285      return Statistics.Range(values);
286    }
287  }
288}
Note: See TracBrowser for help on using the repository browser.