Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Weighted TSNE/3.4/TSNE/TSNEStatic.cs @ 15455

Last change on this file since 15455 was 15455, checked in by bwerth, 6 years ago

#2847 added WeightedEuclideanDistance && fixed minor bug in scatterPlot colloring

File size: 28.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21//Code is based on an implementation from Laurens van der Maaten
22
23/*
24*
25* Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
26* All rights reserved.
27*
28* Redistribution and use in source and binary forms, with or without
29* modification, are permitted provided that the following conditions are met:
30* 1. Redistributions of source code must retain the above copyright
31*    notice, this list of conditions and the following disclaimer.
32* 2. Redistributions in binary form must reproduce the above copyright
33*    notice, this list of conditions and the following disclaimer in the
34*    documentation and/or other materials provided with the distribution.
35* 3. All advertising materials mentioning features or use of this software
36*    must display the following acknowledgement:
37*    This product includes software developed by the Delft University of Technology.
38* 4. Neither the name of the Delft University of Technology nor the names of
39*    its contributors may be used to endorse or promote products derived from
40*    this software without specific prior written permission.
41*
42* THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
43* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
44* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
45* EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
47* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
48* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
49* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
50* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
51* OF SUCH DAMAGE.
52*
53*/
54#endregion
55
56using System;
57using System.Collections.Generic;
58using HeuristicLab.Collections;
59using HeuristicLab.Common;
60using HeuristicLab.Core;
61using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
62using HeuristicLab.Random;
63
64namespace HeuristicLab.Algorithms.DataAnalysis {
65  [StorableClass]
66  public class TSNEStatic<T> {
67    [StorableClass]
68    public sealed class TSNEState : DeepCloneable {
69      #region Storables
70      // initialized once
71      [Storable]
72      public IDistance<T> distance;
73      [Storable]
74      public IRandom random;
75      [Storable]
76      public double perplexity;
77      [Storable]
78      public bool exact;
79      [Storable]
80      public int noDatapoints;
81      [Storable]
82      public double finalMomentum;
83      [Storable]
84      public int momSwitchIter;
85      [Storable]
86      public int stopLyingIter;
87      [Storable]
88      public double theta;
89      [Storable]
90      public double eta;
91      [Storable]
92      public int newDimensions;
93
94      // for approximate version: sparse representation of similarity/distance matrix
95      [Storable]
96      public double[] valP; // similarity/distance
97      [Storable]
98      public int[] rowP; // row index
99      [Storable]
100      public int[] colP; // col index
101
102      // for exact version: dense representation of distance/similarity matrix
103      [Storable]
104      public double[,] p;
105
106      // mapped data
107      [Storable]
108      public double[,] newData;
109
110      [Storable]
111      public int iter;
112      [Storable]
113      public double currentMomentum;
114
115      // helper variables (updated in each iteration)
116      [Storable]
117      public double[,] gains;
118      [Storable]
119      public double[,] uY;
120      [Storable]
121      public double[,] dY;
122      #endregion
123
124      #region Constructors & Cloning
125      private TSNEState(TSNEState original, Cloner cloner) : base(original, cloner) {
126        distance = cloner.Clone(original.distance);
127        random = cloner.Clone(original.random);
128        perplexity = original.perplexity;
129        exact = original.exact;
130        noDatapoints = original.noDatapoints;
131        finalMomentum = original.finalMomentum;
132        momSwitchIter = original.momSwitchIter;
133        stopLyingIter = original.stopLyingIter;
134        theta = original.theta;
135        eta = original.eta;
136        newDimensions = original.newDimensions;
137        if (original.valP != null) {
138          valP = new double[original.valP.Length];
139          Array.Copy(original.valP, valP, valP.Length);
140        }
141        if (original.rowP != null) {
142          rowP = new int[original.rowP.Length];
143          Array.Copy(original.rowP, rowP, rowP.Length);
144        }
145        if (original.colP != null) {
146          colP = new int[original.colP.Length];
147          Array.Copy(original.colP, colP, colP.Length);
148        }
149        if (original.p != null) {
150          p = new double[original.p.GetLength(0), original.p.GetLength(1)];
151          Array.Copy(original.p, p, p.Length);
152        }
153        newData = new double[original.newData.GetLength(0), original.newData.GetLength(1)];
154        Array.Copy(original.newData, newData, newData.Length);
155        iter = original.iter;
156        currentMomentum = original.currentMomentum;
157        gains = new double[original.gains.GetLength(0), original.gains.GetLength(1)];
158        Array.Copy(original.gains, gains, gains.Length);
159        uY = new double[original.uY.GetLength(0), original.uY.GetLength(1)];
160        Array.Copy(original.uY, uY, uY.Length);
161        dY = new double[original.dY.GetLength(0), original.dY.GetLength(1)];
162        Array.Copy(original.dY, dY, dY.Length);
163      }
164
165      public override IDeepCloneable Clone(Cloner cloner) {
166        return new TSNEState(this, cloner);
167      }
168
169      [StorableConstructor]
170      public TSNEState(bool deserializing) { }
171
172      public TSNEState(T[] data, IDistance<T> distance, IRandom random, int newDimensions, double perplexity,
173        double theta, int stopLyingIter, int momSwitchIter, double momentum, double finalMomentum, double eta, bool randomInit) {
174        this.distance = distance;
175        this.random = random;
176        this.newDimensions = newDimensions;
177        this.perplexity = perplexity;
178        this.theta = theta;
179        this.stopLyingIter = stopLyingIter;
180        this.momSwitchIter = momSwitchIter;
181        currentMomentum = momentum;
182        this.finalMomentum = finalMomentum;
183        this.eta = eta;
184
185        // initialize
186        noDatapoints = data.Length;
187        if (noDatapoints - 1 < 3 * perplexity)
188          throw new ArgumentException("Perplexity too large for the number of data points!");
189
190        exact = Math.Abs(theta) < double.Epsilon;
191        newData = new double[noDatapoints, newDimensions];
192        dY = new double[noDatapoints, newDimensions];
193        uY = new double[noDatapoints, newDimensions];
194        gains = new double[noDatapoints, newDimensions];
195        for (var i = 0; i < noDatapoints; i++)
196        for (var j = 0; j < newDimensions; j++)
197          gains[i, j] = 1.0;
198
199        p = null;
200        rowP = null;
201        colP = null;
202        valP = null;
203
204        //Calculate Similarities
205        if (exact) p = CalculateExactSimilarites(data, distance, perplexity);
206        else CalculateApproximateSimilarities(data, distance, perplexity, out rowP, out colP, out valP);
207
208        // Lie about the P-values (factor is 4 in the MATLAB implementation)
209        if (exact) for (var i = 0; i < noDatapoints; i++) for (var j = 0; j < noDatapoints; j++) p[i, j] *= 12.0;
210        else for (var i = 0; i < rowP[noDatapoints]; i++) valP[i] *= 12.0;
211
212        // Initialize solution (randomly)
213        var rand = new NormalDistributedRandom(random, 0, 1);
214        for (var i = 0; i < noDatapoints; i++)
215        for (var j = 0; j < newDimensions; j++)
216          newData[i, j] = rand.NextDouble() * .0001;
217
218        if (!(data[0] is IReadOnlyList<double>) || randomInit) return;
219        for (var i = 0; i < noDatapoints; i++)
220        for (var j = 0; j < newDimensions; j++) {
221          var row = (IReadOnlyList<double>) data[i];
222          newData[i, j] = row[j % row.Count];
223        }
224      }
225      #endregion
226
227      public double EvaluateError() {
228        return exact ? EvaluateErrorExact(p, newData, noDatapoints, newDimensions) : EvaluateErrorApproximate(rowP, colP, valP, newData, theta);
229      }
230
231      #region Helpers
232      private static void CalculateApproximateSimilarities(T[] data, IDistance<T> distance, double perplexity, out int[] rowP, out int[] colP, out double[] valP) {
233        // Compute asymmetric pairwise input similarities
234        ComputeGaussianPerplexity(data, distance, out rowP, out colP, out valP, perplexity, (int) (3 * perplexity));
235        // Symmetrize input similarities
236        int[] sRowP, symColP;
237        double[] sValP;
238        SymmetrizeMatrix(rowP, colP, valP, out sRowP, out symColP, out sValP);
239        rowP = sRowP;
240        colP = symColP;
241        valP = sValP;
242        var sumP = .0;
243        for (var i = 0; i < rowP[data.Length]; i++) sumP += valP[i];
244        for (var i = 0; i < rowP[data.Length]; i++) valP[i] /= sumP;
245      }
246
247      private static double[,] CalculateExactSimilarites(T[] data, IDistance<T> distance, double perplexity) {
248        // Compute similarities
249        var p = new double[data.Length, data.Length];
250        ComputeGaussianPerplexity(data, distance, p, perplexity);
251        // Symmetrize input similarities
252        for (var n = 0; n < data.Length; n++) {
253          for (var m = n + 1; m < data.Length; m++) {
254            p[n, m] += p[m, n];
255            p[m, n] = p[n, m];
256          }
257        }
258        var sumP = .0;
259        for (var i = 0; i < data.Length; i++) for (var j = 0; j < data.Length; j++) sumP += p[i, j];
260        for (var i = 0; i < data.Length; i++) for (var j = 0; j < data.Length; j++) p[i, j] /= sumP;
261        return p;
262      }
263
264      private static void ComputeGaussianPerplexity(IReadOnlyList<T> x, IDistance<T> distance, out int[] rowP, out int[] colP, out double[] valP, double perplexity, int k) {
265        if (perplexity > k) throw new ArgumentException("Perplexity should be lower than k!");
266
267        var n = x.Count;
268        // Allocate the memory we need
269        rowP = new int[n + 1];
270        colP = new int[n * k];
271        valP = new double[n * k];
272        var curP = new double[n - 1];
273        rowP[0] = 0;
274        for (var i = 0; i < n; i++) rowP[i + 1] = rowP[i] + k;
275
276        var objX = new List<IndexedItem<T>>();
277        for (var i = 0; i < n; i++) objX.Add(new IndexedItem<T>(i, x[i]));
278
279        // Build ball tree on data set
280        var tree = new VantagePointTree<IndexedItem<T>>(new IndexedItemDistance<T>(distance), objX);
281
282        // Loop over all points to find nearest neighbors
283        for (var i = 0; i < n; i++) {
284          IList<IndexedItem<T>> indices;
285          IList<double> distances;
286
287          // Find nearest neighbors
288          tree.Search(objX[i], k + 1, out indices, out distances);
289
290          // Initialize some variables for binary search
291          var found = false;
292          var beta = 1.0;
293          var minBeta = double.MinValue;
294          var maxBeta = double.MaxValue;
295          const double tol = 1e-5;
296
297          // Iterate until we found a good perplexity
298          var iter = 0;
299          double sumP = 0;
300          while (!found && iter < 200) {
301            // Compute Gaussian kernel row
302            for (var m = 0; m < k; m++) curP[m] = Math.Exp(-beta * distances[m + 1]);
303
304            // Compute entropy of current row
305            sumP = double.Epsilon;
306            for (var m = 0; m < k; m++) sumP += curP[m];
307            var h = .0;
308            for (var m = 0; m < k; m++) h += beta * (distances[m + 1] * curP[m]);
309            h = h / sumP + Math.Log(sumP);
310
311            // Evaluate whether the entropy is within the tolerance level
312            var hdiff = h - Math.Log(perplexity);
313            if (hdiff < tol && -hdiff < tol) {
314              found = true;
315            }
316            else {
317              if (hdiff > 0) {
318                minBeta = beta;
319                if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
320                  beta *= 2.0;
321                else
322                  beta = (beta + maxBeta) / 2.0;
323              }
324              else {
325                maxBeta = beta;
326                if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
327                  beta /= 2.0;
328                else
329                  beta = (beta + minBeta) / 2.0;
330              }
331            }
332
333            // Update iteration counter
334            iter++;
335          }
336
337          // Row-normalize current row of P and store in matrix
338          for (var m = 0; m < k; m++) curP[m] /= sumP;
339          for (var m = 0; m < k; m++) {
340            colP[rowP[i] + m] = indices[m + 1].Index;
341            valP[rowP[i] + m] = curP[m];
342          }
343        }
344      }
345      private static void ComputeGaussianPerplexity(T[] x, IDistance<T> distance, double[,] p, double perplexity) {
346        // Compute the distance matrix
347        var dd = ComputeDistances(x, distance);
348
349        var n = x.Length;
350        // Compute the Gaussian kernel row by row
351        for (var i = 0; i < n; i++) {
352          // Initialize some variables
353          var found = false;
354          var beta = 1.0;
355          var minBeta = double.MinValue;
356          var maxBeta = double.MaxValue;
357          const double tol = 1e-5;
358          double sumP = 0;
359
360          // Iterate until we found a good perplexity
361          var iter = 0;
362          while (!found && iter < 200) { // 200 iterations as in tSNE implementation by van der Maarten
363
364            // Compute Gaussian kernel row
365            for (var m = 0; m < n; m++) p[i, m] = Math.Exp(-beta * dd[i][m]);
366            p[i, i] = double.Epsilon;
367
368            // Compute entropy of current row
369            sumP = double.Epsilon;
370            for (var m = 0; m < n; m++) sumP += p[i, m];
371            var h = 0.0;
372            for (var m = 0; m < n; m++) h += beta * (dd[i][m] * p[i, m]);
373            h = h / sumP + Math.Log(sumP);
374
375            // Evaluate whether the entropy is within the tolerance level
376            var hdiff = h - Math.Log(perplexity);
377            if (hdiff < tol && -hdiff < tol) {
378              found = true;
379            }
380            else {
381              if (hdiff > 0) {
382                minBeta = beta;
383                if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
384                  beta *= 2.0;
385                else
386                  beta = (beta + maxBeta) / 2.0;
387              }
388              else {
389                maxBeta = beta;
390                if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
391                  beta /= 2.0;
392                else
393                  beta = (beta + minBeta) / 2.0;
394              }
395            }
396
397            // Update iteration counter
398            iter++;
399          }
400
401          // Row normalize P
402          for (var m = 0; m < n; m++) p[i, m] /= sumP;
403        }
404      }
405      private static double[][] ComputeDistances(T[] x, IDistance<T> distance) {
406        var res = new double[x.Length][];
407        for (var r = 0; r < x.Length; r++) {
408          var rowV = new double[x.Length];
409          // all distances must be symmetric
410          for (var c = 0; c < r; c++) {
411            rowV[c] = res[c][r];
412          }
413          rowV[r] = 0.0; // distance to self is zero for all distances
414          for (var c = r + 1; c < x.Length; c++) {
415            rowV[c] = distance.Get(x[r], x[c]);
416          }
417          res[r] = rowV;
418        }
419        return res;
420        // return x.Select(m => x.Select(n => distance.Get(m, n)).ToArray()).ToArray();
421      }
422      private static double EvaluateErrorExact(double[,] p, double[,] y, int n, int d) {
423        // Compute the squared Euclidean distance matrix
424        var dd = new double[n, n];
425        var q = new double[n, n];
426        ComputeSquaredEuclideanDistance(y, n, d, dd);
427
428        // Compute Q-matrix and normalization sum
429        var sumQ = double.Epsilon;
430        for (var n1 = 0; n1 < n; n1++) {
431          for (var m = 0; m < n; m++) {
432            if (n1 != m) {
433              q[n1, m] = 1 / (1 + dd[n1, m]);
434              sumQ += q[n1, m];
435            }
436            else q[n1, m] = double.Epsilon;
437          }
438        }
439        for (var i = 0; i < n; i++) for (var j = 0; j < n; j++) q[i, j] /= sumQ;
440
441        // Sum t-SNE error
442        var c = .0;
443        for (var i = 0; i < n; i++)
444        for (var j = 0; j < n; j++) {
445          c += p[i, j] * Math.Log((p[i, j] + float.Epsilon) / (q[i, j] + float.Epsilon));
446        }
447        return c;
448      }
449      private static double EvaluateErrorApproximate(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, double[,] y, double theta) {
450        // Get estimate of normalization term
451        var n = y.GetLength(0);
452        var d = y.GetLength(1);
453        var tree = new SpacePartitioningTree(y);
454        var buff = new double[d];
455        var sumQ = 0.0;
456        for (var i = 0; i < n; i++) tree.ComputeNonEdgeForces(i, theta, buff, ref sumQ);
457
458        // Loop over all edges to compute t-SNE error
459        var c = .0;
460        for (var k = 0; k < n; k++) {
461          for (var i = rowP[k]; i < rowP[k + 1]; i++) {
462            var q = .0;
463            for (var j = 0; j < d; j++) buff[j] = y[k, j];
464            for (var j = 0; j < d; j++) buff[j] -= y[colP[i], j];
465            for (var j = 0; j < d; j++) q += buff[j] * buff[j];
466            q = (1.0 / (1.0 + q)) / sumQ;
467            c += valP[i] * Math.Log((valP[i] + float.Epsilon) / (q + float.Epsilon));
468          }
469        }
470        return c;
471      }
472      private static void SymmetrizeMatrix(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, out int[] symRowP, out int[] symColP, out double[] symValP) {
473        // Count number of elements and row counts of symmetric matrix
474        var n = rowP.Count - 1;
475        var rowCounts = new int[n];
476        for (var j = 0; j < n; j++) {
477          for (var i = rowP[j]; i < rowP[j + 1]; i++) {
478            // Check whether element (col_P[i], n) is present
479            var present = false;
480            for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
481              if (colP[m] == j) present = true;
482            }
483            if (present) rowCounts[j]++;
484            else {
485              rowCounts[j]++;
486              rowCounts[colP[i]]++;
487            }
488          }
489        }
490        var noElem = 0;
491        for (var i = 0; i < n; i++) noElem += rowCounts[i];
492
493        // Allocate memory for symmetrized matrix
494        symRowP = new int[n + 1];
495        symColP = new int[noElem];
496        symValP = new double[noElem];
497
498        // Construct new row indices for symmetric matrix
499        symRowP[0] = 0;
500        for (var i = 0; i < n; i++) symRowP[i + 1] = symRowP[i] + rowCounts[i];
501
502        // Fill the result matrix
503        var offset = new int[n];
504        for (var j = 0; j < n; j++) {
505          for (var i = rowP[j]; i < rowP[j + 1]; i++) { // considering element(n, colP[i])
506
507            // Check whether element (col_P[i], n) is present
508            var present = false;
509            for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
510              if (colP[m] != j) continue;
511              present = true;
512              if (j > colP[i]) continue; // make sure we do not add elements twice
513              symColP[symRowP[j] + offset[j]] = colP[i];
514              symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
515              symValP[symRowP[j] + offset[j]] = valP[i] + valP[m];
516              symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i] + valP[m];
517            }
518
519            // If (colP[i], n) is not present, there is no addition involved
520            if (!present) {
521              symColP[symRowP[j] + offset[j]] = colP[i];
522              symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
523              symValP[symRowP[j] + offset[j]] = valP[i];
524              symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i];
525            }
526
527            // Update offsets
528            if (present && (j > colP[i])) continue;
529            offset[j]++;
530            if (colP[i] != j) offset[colP[i]]++;
531          }
532        }
533
534        for (var i = 0; i < noElem; i++) symValP[i] /= 2.0;
535      }
536      #endregion
537    }
538
539    /// <summary>
540    /// Static interface to tSNE
541    /// </summary>
542    /// <param name="data"></param>
543    /// <param name="distance">The distance function used to differentiate similar from non-similar points, e.g. Euclidean distance.</param>
544    /// <param name="random">Random number generator</param>
545    /// <param name="newDimensions">Dimensionality of projected space (usually 2 for easy visual analysis).</param>
546    /// <param name="perplexity">Perplexity parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower</param>
547    /// <param name="iterations">Maximum number of iterations for gradient descent.</param>
548    /// <param name="theta">Value describing how much appoximated gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise. CAUTION: exact calculation of forces requires building a non-sparse N*N matrix where N is the number of data points. This may exceed memory limitations.</param>
549    /// <param name="stopLyingIter">Number of iterations after which p is no longer approximated.</param>
550    /// <param name="momSwitchIter">Number of iterations after which the momentum in the gradient descent is switched.</param>
551    /// <param name="momentum">The initial momentum in the gradient descent.</param>
552    /// <param name="finalMomentum">The final momentum in gradient descent (after momentum switch).</param>
553    /// <param name="eta">Gradient descent learning rate.</param>
554    /// <returns></returns>
555    public static double[,] Run(T[] data, IDistance<T> distance, IRandom random,
556      int newDimensions = 2, double perplexity = 25, int iterations = 1000,
557      double theta = 0,
558      int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
559      double finalMomentum = .8, double eta = 10.0
560    ) {
561      var state = CreateState(data, distance, random, newDimensions, perplexity,
562        theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta);
563
564      for (var i = 0; i < iterations - 1; i++) {
565        Iterate(state);
566      }
567      return Iterate(state);
568    }
569
570    public static TSNEState CreateState(T[] data, IDistance<T> distance, IRandom random,
571      int newDimensions = 2, double perplexity = 25, double theta = 0,
572      int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
573      double finalMomentum = .8, double eta = 10.0, bool randomInit = true
574    ) {
575      return new TSNEState(data, distance, random, newDimensions, perplexity, theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta, randomInit);
576    }
577
578    public static double[,] Iterate(TSNEState state) {
579      if (state.exact)
580        ComputeExactGradient(state.p, state.newData, state.noDatapoints, state.newDimensions, state.dY);
581      else
582        ComputeApproximateGradient(state.rowP, state.colP, state.valP, state.newData, state.noDatapoints, state.newDimensions, state.dY, state.theta);
583
584      // Update gains
585      for (var i = 0; i < state.noDatapoints; i++) {
586        for (var j = 0; j < state.newDimensions; j++) {
587          state.gains[i, j] = Math.Sign(state.dY[i, j]) != Math.Sign(state.uY[i, j])
588            ? state.gains[i, j] + .2 // +0.2 nd *0.8 are used in two separate implementations of tSNE -> seems to be correct
589            : state.gains[i, j] * .8;
590          if (state.gains[i, j] < .01) state.gains[i, j] = .01;
591        }
592      }
593
594
595      // Perform gradient update (with momentum and gains)
596      for (var i = 0; i < state.noDatapoints; i++)
597      for (var j = 0; j < state.newDimensions; j++)
598        state.uY[i, j] = state.currentMomentum * state.uY[i, j] - state.eta * state.gains[i, j] * state.dY[i, j];
599
600      for (var i = 0; i < state.noDatapoints; i++)
601      for (var j = 0; j < state.newDimensions; j++)
602        state.newData[i, j] = state.newData[i, j] + state.uY[i, j];
603
604      // Make solution zero-mean
605      ZeroMean(state.newData);
606
607      // Stop lying about the P-values after a while, and switch momentum
608      if (state.iter == state.stopLyingIter) {
609        if (state.exact)
610          for (var i = 0; i < state.noDatapoints; i++)
611          for (var j = 0; j < state.noDatapoints; j++)
612            state.p[i, j] /= 12.0;
613        else
614          for (var i = 0; i < state.rowP[state.noDatapoints]; i++)
615            state.valP[i] /= 12.0;
616      }
617
618      if (state.iter == state.momSwitchIter)
619        state.currentMomentum = state.finalMomentum;
620
621      state.iter++;
622      return state.newData;
623    }
624
625    #region Helpers
626    private static void ComputeApproximateGradient(int[] rowP, int[] colP, double[] valP, double[,] y, int n, int d, double[,] dC, double theta) {
627      var tree = new SpacePartitioningTree(y);
628      var sumQ = 0.0;
629      var posF = new double[n, d];
630      var negF = new double[n, d];
631      SpacePartitioningTree.ComputeEdgeForces(rowP, colP, valP, n, posF, y, d);
632      var row = new double[d];
633      for (var n1 = 0; n1 < n; n1++) {
634        Array.Clear(row, 0, row.Length);
635        tree.ComputeNonEdgeForces(n1, theta, row, ref sumQ);
636        Buffer.BlockCopy(row, 0, negF, (sizeof(double) * n1 * d), d * sizeof(double));
637      }
638
639      // Compute final t-SNE gradient
640      for (var i = 0; i < n; i++)
641      for (var j = 0; j < d; j++) {
642        dC[i, j] = posF[i, j] - negF[i, j] / sumQ;
643      }
644    }
645
646    private static void ComputeExactGradient(double[,] p, double[,] y, int n, int d, double[,] dC) {
647      // Make sure the current gradient contains zeros
648      for (var i = 0; i < n; i++) for (var j = 0; j < d; j++) dC[i, j] = 0.0;
649
650      // Compute the squared Euclidean distance matrix
651      var dd = new double[n, n];
652      ComputeSquaredEuclideanDistance(y, n, d, dd);
653
654      // Compute Q-matrix and normalization sum
655      var q = new double[n, n];
656      var sumQ = .0;
657      for (var n1 = 0; n1 < n; n1++) {
658        for (var m = 0; m < n; m++) {
659          if (n1 == m) continue;
660          q[n1, m] = 1 / (1 + dd[n1, m]);
661          sumQ += q[n1, m];
662        }
663      }
664
665      // Perform the computation of the gradient
666      for (var n1 = 0; n1 < n; n1++) {
667        for (var m = 0; m < n; m++) {
668          if (n1 == m) continue;
669          var mult = (p[n1, m] - q[n1, m] / sumQ) * q[n1, m];
670          for (var d1 = 0; d1 < d; d1++) {
671            dC[n1, d1] += (y[n1, d1] - y[m, d1]) * mult;
672          }
673        }
674      }
675    }
676
677    private static void ComputeSquaredEuclideanDistance(double[,] x, int n, int d, double[,] dd) {
678      var dataSums = new double[n];
679      for (var i = 0; i < n; i++) {
680        for (var j = 0; j < d; j++) {
681          dataSums[i] += x[i, j] * x[i, j];
682        }
683      }
684      for (var i = 0; i < n; i++) {
685        for (var m = 0; m < n; m++) {
686          dd[i, m] = dataSums[i] + dataSums[m];
687        }
688      }
689      for (var i = 0; i < n; i++) {
690        dd[i, i] = 0.0;
691        for (var m = i + 1; m < n; m++) {
692          dd[i, m] = 0.0;
693          for (var j = 0; j < d; j++) {
694            dd[i, m] += (x[i, j] - x[m, j]) * (x[i, j] - x[m, j]);
695          }
696          dd[m, i] = dd[i, m];
697        }
698      }
699    }
700
701    private static void ZeroMean(double[,] x) {
702      // Compute data mean
703      var n = x.GetLength(0);
704      var d = x.GetLength(1);
705      var mean = new double[d];
706      for (var i = 0; i < n; i++) {
707        for (var j = 0; j < d; j++) {
708          mean[j] += x[i, j];
709        }
710      }
711      for (var i = 0; i < d; i++) {
712        mean[i] /= n;
713      }
714      // Subtract data mean
715      for (var i = 0; i < n; i++) {
716        for (var j = 0; j < d; j++) {
717          x[i, j] -= mean[j];
718        }
719      }
720    }
721    #endregion
722  }
723}
Note: See TracBrowser for help on using the repository browser.