Free cookie consent management tool by TermsFeed Policy Generator

source: branches/WebJobManager/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisModel.cs @ 16460

Last change on this file since 16460 was 13656, checked in by ascheibe, 9 years ago

#2582 created branch for Hive Web Job Manager

File size: 6.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
29  /// <summary>
30  /// Abstract base class for symbolic data analysis models
31  /// </summary>
32  [StorableClass]
33  public abstract class SymbolicDataAnalysisModel : NamedItem, ISymbolicDataAnalysisModel {
34
35
36    #region properties
37    [Storable]
38    private double lowerEstimationLimit;
39    public double LowerEstimationLimit { get { return lowerEstimationLimit; } }
40    [Storable]
41    private double upperEstimationLimit;
42    public double UpperEstimationLimit { get { return upperEstimationLimit; } }
43
44    [Storable]
45    private ISymbolicExpressionTree symbolicExpressionTree;
46    public ISymbolicExpressionTree SymbolicExpressionTree
47    {
48      get { return symbolicExpressionTree; }
49    }
50
51    [Storable]
52    private ISymbolicDataAnalysisExpressionTreeInterpreter interpreter;
53    public ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter
54    {
55      get { return interpreter; }
56    }
57    #endregion
58
59    [StorableConstructor]
60    protected SymbolicDataAnalysisModel(bool deserializing) : base(deserializing) { }
61    protected SymbolicDataAnalysisModel(SymbolicDataAnalysisModel original, Cloner cloner)
62      : base(original, cloner) {
63      this.symbolicExpressionTree = cloner.Clone(original.symbolicExpressionTree);
64      this.interpreter = cloner.Clone(original.interpreter);
65      this.lowerEstimationLimit = original.lowerEstimationLimit;
66      this.upperEstimationLimit = original.upperEstimationLimit;
67    }
68    protected SymbolicDataAnalysisModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
69       double lowerEstimationLimit, double upperEstimationLimit)
70      : base() {
71      this.name = ItemName;
72      this.description = ItemDescription;
73      this.symbolicExpressionTree = tree;
74      this.interpreter = interpreter;
75      this.lowerEstimationLimit = lowerEstimationLimit;
76      this.upperEstimationLimit = upperEstimationLimit;
77    }
78
79    #region Scaling
80    protected void Scale(IDataAnalysisProblemData problemData, string targetVariable) {
81      var dataset = problemData.Dataset;
82      var rows = problemData.TrainingIndices;
83      var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows);
84      var targetValues = dataset.GetDoubleValues(targetVariable, rows);
85
86      var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
87      var targetValuesEnumerator = targetValues.GetEnumerator();
88      var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
89      while (targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext()) {
90        double target = targetValuesEnumerator.Current;
91        double estimated = estimatedValuesEnumerator.Current;
92        if (!double.IsNaN(estimated) && !double.IsInfinity(estimated))
93          linearScalingCalculator.Add(estimated, target);
94      }
95      if (linearScalingCalculator.ErrorState == OnlineCalculatorError.None && (targetValuesEnumerator.MoveNext() || estimatedValuesEnumerator.MoveNext()))
96        throw new ArgumentException("Number of elements in target and estimated values enumeration do not match.");
97
98      double alpha = linearScalingCalculator.Alpha;
99      double beta = linearScalingCalculator.Beta;
100      if (linearScalingCalculator.ErrorState != OnlineCalculatorError.None) return;
101
102      ConstantTreeNode alphaTreeNode = null;
103      ConstantTreeNode betaTreeNode = null;
104      // check if model has been scaled previously by analyzing the structure of the tree
105      var startNode = SymbolicExpressionTree.Root.GetSubtree(0);
106      if (startNode.GetSubtree(0).Symbol is Addition) {
107        var addNode = startNode.GetSubtree(0);
108        if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
109          alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
110          var mulNode = addNode.GetSubtree(0);
111          if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
112            betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
113          }
114        }
115      }
116      // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
117      if (alphaTreeNode != null && betaTreeNode != null) {
118        betaTreeNode.Value *= beta;
119        alphaTreeNode.Value *= beta;
120        alphaTreeNode.Value += alpha;
121      } else {
122        var mainBranch = startNode.GetSubtree(0);
123        startNode.RemoveSubtree(0);
124        var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
125        startNode.AddSubtree(scaledMainBranch);
126      }
127    }
128
129    private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
130      if (alpha.IsAlmost(0.0)) {
131        return treeNode;
132      } else {
133        var addition = new Addition();
134        var node = addition.CreateTreeNode();
135        var alphaConst = MakeConstant(alpha);
136        node.AddSubtree(treeNode);
137        node.AddSubtree(alphaConst);
138        return node;
139      }
140    }
141
142    private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode treeNode, double beta) {
143      if (beta.IsAlmost(1.0)) {
144        return treeNode;
145      } else {
146        var multipliciation = new Multiplication();
147        var node = multipliciation.CreateTreeNode();
148        var betaConst = MakeConstant(beta);
149        node.AddSubtree(treeNode);
150        node.AddSubtree(betaConst);
151        return node;
152      }
153    }
154
155    private static ISymbolicExpressionTreeNode MakeConstant(double c) {
156      var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
157      node.Value = c;
158      return node;
159    }
160    #endregion
161  }
162}
Note: See TracBrowser for help on using the repository browser.