[6608] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 25 | using System.Collections.Generic;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using System;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
[6710] | 29 | using HeuristicLab.Problems.VehicleRouting.ProblemInstances;
|
---|
[6608] | 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.VehicleRouting.Encodings.Potvin {
|
---|
| 32 | [Item("PotvinInsertionBasedCrossover", "The IBX crossover for VRP representations. It is implemented as described in Berger, J and Solois, M and Begin, R (1998). A hybrid genetic algorithm for the vehicle routing problem with time windows. LNCS 1418. Springer, London 114-127.")]
|
---|
| 33 | [StorableClass]
|
---|
| 34 | public sealed class PotvinInsertionBasedCrossover : PotvinCrossover {
|
---|
| 35 | public IValueParameter<IntValue> Length {
|
---|
| 36 | get { return (IValueParameter<IntValue>)Parameters["Length"]; }
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | [StorableConstructor]
|
---|
| 40 | private PotvinInsertionBasedCrossover(bool deserializing) : base(deserializing) { }
|
---|
| 41 | private PotvinInsertionBasedCrossover(PotvinInsertionBasedCrossover original, Cloner cloner)
|
---|
| 42 | : base(original, cloner) {
|
---|
| 43 | }
|
---|
| 44 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 45 | return new PotvinInsertionBasedCrossover(this, cloner);
|
---|
| 46 | }
|
---|
| 47 | public PotvinInsertionBasedCrossover()
|
---|
| 48 | : base() {
|
---|
| 49 | Parameters.Add(new ValueParameter<IntValue>("Length", "The maximum length of the replaced route.", new IntValue(1)));
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | private static int SelectRandomTourBiasedByLength(IRandom random, PotvinEncoding individual) {
|
---|
| 53 | int tourIndex = -1;
|
---|
| 54 |
|
---|
| 55 | double sum = 0.0;
|
---|
| 56 | double[] probabilities = new double[individual.Tours.Count];
|
---|
| 57 | for (int i = 0; i < individual.Tours.Count; i++) {
|
---|
| 58 | probabilities[i] = 1.0 / ((double)individual.Tours[i].Stops.Count / (double)individual.Cities);
|
---|
| 59 | sum += probabilities[i];
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | double rand = random.NextDouble() * sum;
|
---|
| 63 | double cumulatedProbabilities = 0.0;
|
---|
| 64 | int index = 0;
|
---|
| 65 | while (tourIndex == -1 && index < probabilities.Length) {
|
---|
| 66 | if (cumulatedProbabilities <= rand && rand <= cumulatedProbabilities + probabilities[index])
|
---|
| 67 | tourIndex = index;
|
---|
| 68 |
|
---|
| 69 | cumulatedProbabilities += probabilities[index];
|
---|
| 70 | index++;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | return tourIndex;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | private double CalculateCentroidDistance(Tour t1, Tour t2, DoubleMatrix coordinates) {
|
---|
| 77 | double xSum = 0;
|
---|
| 78 | double ySum = 0;
|
---|
| 79 | double c1X, c1Y, c2X, c2Y;
|
---|
| 80 |
|
---|
| 81 | for (int i = 0; i < t1.Stops.Count; i++) {
|
---|
| 82 | xSum += coordinates[t1.Stops[i], 0];
|
---|
| 83 | ySum += coordinates[t1.Stops[i], 1];
|
---|
| 84 | }
|
---|
| 85 | c1X = xSum / t1.Stops.Count;
|
---|
| 86 | c1Y = ySum / t1.Stops.Count;
|
---|
| 87 |
|
---|
| 88 | for (int i = 0; i < t2.Stops.Count; i++) {
|
---|
| 89 | xSum += coordinates[t2.Stops[i], 0];
|
---|
| 90 | ySum += coordinates[t2.Stops[i], 1];
|
---|
| 91 | }
|
---|
| 92 | c2X = xSum / t1.Stops.Count;
|
---|
| 93 | c2Y = ySum / t1.Stops.Count;
|
---|
| 94 |
|
---|
| 95 | return Math.Sqrt(
|
---|
| 96 | (c1X - c2X) * (c1X - c2X) +
|
---|
| 97 | (c1Y - c2Y) * (c1Y - c2Y));
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | private double CalculateMeanCentroidDistance(Tour t1, IList<Tour> tours, DoubleMatrix coordinates) {
|
---|
| 101 | double sum = 0;
|
---|
| 102 |
|
---|
| 103 | for (int i = 0; i < tours.Count; i++) {
|
---|
| 104 | sum += CalculateCentroidDistance(t1, tours[i], coordinates);
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | return sum / tours.Count;
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | private int SelectCityBiasedByNeighborDistance(IRandom random, Tour tour) {
|
---|
| 111 | int cityIndex = -1;
|
---|
| 112 |
|
---|
| 113 | double sum = 0.0;
|
---|
| 114 | double[] probabilities = new double[tour.Stops.Count];
|
---|
| 115 | for (int i = 0; i < tour.Stops.Count; i++) {
|
---|
| 116 | int next;
|
---|
| 117 | if (i + 1 >= tour.Stops.Count)
|
---|
| 118 | next = 0;
|
---|
| 119 | else
|
---|
| 120 | next = tour.Stops[i + 1];
|
---|
| 121 | double distance = ProblemInstance.GetDistance(
|
---|
| 122 | tour.Stops[i], next);
|
---|
| 123 |
|
---|
| 124 | int prev;
|
---|
| 125 | if (i - 1 < 0)
|
---|
| 126 | prev = 0;
|
---|
| 127 | else
|
---|
| 128 | prev = tour.Stops[i - 1];
|
---|
| 129 | distance += ProblemInstance.GetDistance(
|
---|
| 130 | tour.Stops[i], prev);
|
---|
| 131 |
|
---|
| 132 | probabilities[i] = distance;
|
---|
| 133 | sum += probabilities[i];
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | double rand = random.NextDouble() * sum;
|
---|
| 137 | double cumulatedProbabilities = 0.0;
|
---|
| 138 | int index = 0;
|
---|
| 139 | while (cityIndex == -1 && index < probabilities.Length) {
|
---|
| 140 | if (cumulatedProbabilities <= rand && rand <= cumulatedProbabilities + probabilities[index])
|
---|
| 141 | cityIndex = index;
|
---|
| 142 |
|
---|
| 143 | cumulatedProbabilities += probabilities[index];
|
---|
| 144 | index++;
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | return cityIndex;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | private bool FindRouteInsertionPlace(
|
---|
| 151 | Tour tour,
|
---|
| 152 | int city, bool allowInfeasible, out int place) {
|
---|
| 153 | place = -1;
|
---|
[6710] | 154 |
|
---|
| 155 | if (tour.Stops.Contains(city))
|
---|
| 156 | return false;
|
---|
| 157 |
|
---|
[6752] | 158 | if (tour.Stops.Count == 0) {
|
---|
| 159 | place = 0;
|
---|
| 160 | return true;
|
---|
| 161 | }
|
---|
| 162 |
|
---|
[6608] | 163 | double minDetour = 0;
|
---|
[6752] | 164 | VRPEvaluation eval = ProblemInstance.Evaluate(tour);
|
---|
| 165 | bool originalFeasible = ProblemInstance.Feasible(eval);
|
---|
[6608] | 166 |
|
---|
| 167 | for (int i = 0; i <= tour.Stops.Count; i++) {
|
---|
[6752] | 168 | bool feasible;
|
---|
| 169 | double detour = ProblemInstance.GetInsertionCosts(eval, city, 0, i, out feasible);
|
---|
| 170 | if (feasible || allowInfeasible) {
|
---|
| 171 | if (place < 0 || detour < minDetour) {
|
---|
[6608] | 172 | place = i;
|
---|
| 173 | minDetour = detour;
|
---|
| 174 | }
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | return place >= 0;
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | private ICollection<int> GetUnrouted(PotvinEncoding solution, int cities) {
|
---|
| 182 | HashSet<int> undiscovered = new HashSet<int>();
|
---|
| 183 | for (int i = 1; i <= cities; i++) {
|
---|
| 184 | undiscovered.Add(i);
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | foreach (Tour tour in solution.Tours) {
|
---|
| 188 | foreach (int city in tour.Stops)
|
---|
| 189 | undiscovered.Remove(city);
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | return undiscovered;
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 | protected override PotvinEncoding Crossover(IRandom random, PotvinEncoding parent1, PotvinEncoding parent2) {
|
---|
| 196 | PotvinEncoding child = new PotvinEncoding(ProblemInstance);
|
---|
| 197 |
|
---|
| 198 | bool allowInfeasible = AllowInfeasibleSolutions.Value.Value;
|
---|
| 199 |
|
---|
| 200 | List<Tour> R1 = new List<Tour>();
|
---|
| 201 | PotvinEncoding p1Clone = parent1.Clone() as PotvinEncoding;
|
---|
| 202 |
|
---|
| 203 | int length = Math.Min(Length.Value.Value, parent1.Tours.Count) + 1;
|
---|
| 204 | int k = random.Next(1, length);
|
---|
| 205 | for (int i = 0; i < k; i++) {
|
---|
| 206 | int index = SelectRandomTourBiasedByLength(random, p1Clone);
|
---|
| 207 | R1.Add(p1Clone.Tours[index]);
|
---|
| 208 | p1Clone.Tours.RemoveAt(index);
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | foreach (Tour r1 in R1) {
|
---|
| 212 | List<int> R2 = new List<int>();
|
---|
| 213 |
|
---|
| 214 | double r = CalculateMeanCentroidDistance(r1, parent2.Tours, ProblemInstance.Coordinates);
|
---|
| 215 | foreach (Tour tour in parent2.Tours) {
|
---|
| 216 | if (CalculateCentroidDistance(r1, tour, ProblemInstance.Coordinates) <= r) {
|
---|
| 217 | R2.AddRange(tour.Stops);
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | Tour childTour = new Tour();
|
---|
| 222 | childTour.Stops.AddRange(r1.Stops);
|
---|
| 223 |
|
---|
| 224 | //DESTROY - remove cities from r1
|
---|
| 225 | int removed = random.Next(1, r1.Stops.Count + 1);
|
---|
| 226 | for (int i = 0; i < removed; i++) {
|
---|
| 227 | childTour.Stops.RemoveAt(SelectCityBiasedByNeighborDistance(random, childTour));
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | //REPAIR - add cities from R2
|
---|
| 231 | int maxCount = random.Next(1, Math.Min(5, R2.Count));
|
---|
| 232 | int count = 0;
|
---|
| 233 |
|
---|
| 234 | while (count < maxCount && R2.Count != 0) {
|
---|
| 235 | PotvinEncoding newChild = child.Clone() as PotvinEncoding;
|
---|
| 236 | newChild.Tours.Add(childTour);
|
---|
| 237 |
|
---|
| 238 | int index = random.Next(R2.Count);
|
---|
| 239 | int city = R2[index];
|
---|
| 240 | R2.RemoveAt(index);
|
---|
| 241 |
|
---|
| 242 | int place = -1;
|
---|
[6752] | 243 | bool found = FindRouteInsertionPlace(childTour, city, allowInfeasible, out place);
|
---|
| 244 | if (found) {
|
---|
[6608] | 245 | childTour.Stops.Insert(place, city);
|
---|
| 246 |
|
---|
| 247 | if (!Repair(random, child, childTour, ProblemInstance, allowInfeasible)) {
|
---|
| 248 | childTour.Stops.RemoveAt(place);
|
---|
| 249 | } else {
|
---|
| 250 | count++;
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | child.Tours.Add(childTour);
|
---|
| 256 | Repair(random, child, childTour, ProblemInstance, allowInfeasible);
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | for (int i = 0; i < p1Clone.Tours.Count; i++) {
|
---|
| 260 | Tour childTour = p1Clone.Tours[i].Clone() as Tour;
|
---|
| 261 | child.Tours.Add(childTour);
|
---|
| 262 | Repair(random, child, childTour, ProblemInstance, allowInfeasible);
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 | //route unrouted customers
|
---|
| 266 | child.Unrouted.AddRange(GetUnrouted(child, ProblemInstance.Cities.Value));
|
---|
| 267 | bool success = RouteUnrouted(child, allowInfeasible);
|
---|
| 268 |
|
---|
| 269 | if (success || allowInfeasible)
|
---|
| 270 | return child;
|
---|
| 271 | else {
|
---|
| 272 | if (random.NextDouble() < 0.5)
|
---|
| 273 | return parent1.Clone() as PotvinEncoding;
|
---|
| 274 | else
|
---|
| 275 | return parent2.Clone() as PotvinEncoding;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 | }
|
---|