Free cookie consent management tool by TermsFeed Policy Generator

source: branches/VOSGA/HeuristicLab.Algorithms.VOffspringSelectionGeneticAlgorithm/VOffspringSelectionGeneticAlgorithm.cs @ 13396

Last change on this file since 13396 was 12079, checked in by ascheibe, 10 years ago

#2267 adapted branch to changes from #2332

File size: 34.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Analysis;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Optimization.Operators;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.PluginInfrastructure;
34using HeuristicLab.Random;
35
36namespace HeuristicLab.Algorithms.VOffspringSelectionGeneticAlgorithm {
37  /// <summary>
38  /// An offspring selection genetic algorithm.
39  /// </summary>
40  [Item("VOSGA", "An OSGA with selectable OS criteria and automtic crossover/mutation selection.")]
41  [Creatable("Algorithms")]
42  [StorableClass]
43  public sealed class VOffspringSelectionGeneticAlgorithm : HeuristicOptimizationEngineAlgorithm, IStorableContent {
44    public string Filename { get; set; }
45
46    #region Problem Properties
47    public override Type ProblemType {
48      get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); }
49    }
50    public new ISingleObjectiveHeuristicOptimizationProblem Problem {
51      get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; }
52      set { base.Problem = value; }
53    }
54    #endregion
55
56    #region Parameter Properties
57    private ValueParameter<IntValue> SeedParameter {
58      get { return (ValueParameter<IntValue>)Parameters["Seed"]; }
59    }
60    private ValueParameter<BoolValue> SetSeedRandomlyParameter {
61      get { return (ValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
62    }
63    private ValueParameter<IntValue> PopulationSizeParameter {
64      get { return (ValueParameter<IntValue>)Parameters["PopulationSize"]; }
65    }
66    public IConstrainedValueParameter<ISelector> SelectorParameter {
67      get { return (IConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
68    }
69    public IConstrainedValueParameter<ICrossover> CrossoverParameter {
70      get { return (IConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
71    }
72    private ValueParameter<PercentValue> MutationProbabilityParameter {
73      get { return (ValueParameter<PercentValue>)Parameters["MutationProbability"]; }
74    }
75    public IConstrainedValueParameter<IManipulator> MutatorParameter {
76      get { return (IConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
77    }
78    private ValueParameter<IntValue> ElitesParameter {
79      get { return (ValueParameter<IntValue>)Parameters["Elites"]; }
80    }
81    private IFixedValueParameter<BoolValue> ReevaluateElitesParameter {
82      get { return (IFixedValueParameter<BoolValue>)Parameters["ReevaluateElites"]; }
83    }
84    private ValueParameter<IntValue> MaximumGenerationsParameter {
85      get { return (ValueParameter<IntValue>)Parameters["MaximumGenerations"]; }
86    }
87    private ValueLookupParameter<DoubleValue> SuccessRatioParameter {
88      get { return (ValueLookupParameter<DoubleValue>)Parameters["SuccessRatio"]; }
89    }
90    private ValueLookupParameter<DoubleValue> ComparisonFactorLowerBoundParameter {
91      get { return (ValueLookupParameter<DoubleValue>)Parameters["ComparisonFactorLowerBound"]; }
92    }
93    private ValueLookupParameter<DoubleValue> ComparisonFactorUpperBoundParameter {
94      get { return (ValueLookupParameter<DoubleValue>)Parameters["ComparisonFactorUpperBound"]; }
95    }
96    public IConstrainedValueParameter<IDiscreteDoubleValueModifier> ComparisonFactorModifierParameter {
97      get { return (IConstrainedValueParameter<IDiscreteDoubleValueModifier>)Parameters["ComparisonFactorModifier"]; }
98    }
99    private ValueLookupParameter<DoubleValue> MaximumSelectionPressureParameter {
100      get { return (ValueLookupParameter<DoubleValue>)Parameters["MaximumSelectionPressure"]; }
101    }
102    private ValueLookupParameter<BoolValue> OffspringSelectionBeforeMutationParameter {
103      get { return (ValueLookupParameter<BoolValue>)Parameters["OffspringSelectionBeforeMutation"]; }
104    }
105    private ValueLookupParameter<IntValue> SelectedParentsParameter {
106      get { return (ValueLookupParameter<IntValue>)Parameters["SelectedParents"]; }
107    }
108    private ValueParameter<MultiAnalyzer> AnalyzerParameter {
109      get { return (ValueParameter<MultiAnalyzer>)Parameters["Analyzer"]; }
110    }
111    private ValueParameter<IntValue> MaximumEvaluatedSolutionsParameter {
112      get { return (ValueParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; }
113    }
114    private IFixedValueParameter<BoolValue> FillPopulationWithParentsParameter {
115      get { return (IFixedValueParameter<BoolValue>)Parameters["FillPopulationWithParents"]; }
116    }
117    public IConstrainedValueParameter<IOffspringSelector> OffspringSelectorParameter {
118      get { return (IConstrainedValueParameter<IOffspringSelector>)Parameters["OffspringSelector"]; }
119    }
120    public ConstrainedValueParameter<ISubScopesQualityComparatorOperator> SubScopesQualityComparatorParameter {
121      get { return (ConstrainedValueParameter<ISubScopesQualityComparatorOperator>)Parameters["SubScopesQualityComparator"]; }
122    }
123    public IConstrainedValueParameter<ISingleObjectiveSolutionSimilarityCalculator> SimilarityCalculatorParameter {
124      get { return (IConstrainedValueParameter<ISingleObjectiveSolutionSimilarityCalculator>)Parameters["SimilarityCalculator"]; }
125    }
126    #endregion
127
128    #region Properties
129    public IntValue Seed {
130      get { return SeedParameter.Value; }
131      set { SeedParameter.Value = value; }
132    }
133    public BoolValue SetSeedRandomly {
134      get { return SetSeedRandomlyParameter.Value; }
135      set { SetSeedRandomlyParameter.Value = value; }
136    }
137    public IntValue PopulationSize {
138      get { return PopulationSizeParameter.Value; }
139      set { PopulationSizeParameter.Value = value; }
140    }
141    public ISelector Selector {
142      get { return SelectorParameter.Value; }
143      set { SelectorParameter.Value = value; }
144    }
145    public IOffspringSelector OffspringSelector {
146      get { return OffspringSelectorParameter.Value; }
147      set { OffspringSelectorParameter.Value = value; }
148    }
149    public ICrossover Crossover {
150      get { return CrossoverParameter.Value; }
151      set { CrossoverParameter.Value = value; }
152    }
153    public PercentValue MutationProbability {
154      get { return MutationProbabilityParameter.Value; }
155      set { MutationProbabilityParameter.Value = value; }
156    }
157    public IManipulator Mutator {
158      get { return MutatorParameter.Value; }
159      set { MutatorParameter.Value = value; }
160    }
161    public IntValue Elites {
162      get { return ElitesParameter.Value; }
163      set { ElitesParameter.Value = value; }
164    }
165    public bool ReevaluteElites {
166      get { return ReevaluateElitesParameter.Value.Value; }
167      set { ReevaluateElitesParameter.Value.Value = value; }
168    }
169    public IntValue MaximumGenerations {
170      get { return MaximumGenerationsParameter.Value; }
171      set { MaximumGenerationsParameter.Value = value; }
172    }
173    public DoubleValue SuccessRatio {
174      get { return SuccessRatioParameter.Value; }
175      set { SuccessRatioParameter.Value = value; }
176    }
177    public DoubleValue ComparisonFactorLowerBound {
178      get { return ComparisonFactorLowerBoundParameter.Value; }
179      set { ComparisonFactorLowerBoundParameter.Value = value; }
180    }
181    public DoubleValue ComparisonFactorUpperBound {
182      get { return ComparisonFactorUpperBoundParameter.Value; }
183      set { ComparisonFactorUpperBoundParameter.Value = value; }
184    }
185    public IDiscreteDoubleValueModifier ComparisonFactorModifier {
186      get { return ComparisonFactorModifierParameter.Value; }
187      set { ComparisonFactorModifierParameter.Value = value; }
188    }
189    public DoubleValue MaximumSelectionPressure {
190      get { return MaximumSelectionPressureParameter.Value; }
191      set { MaximumSelectionPressureParameter.Value = value; }
192    }
193    public BoolValue OffspringSelectionBeforeMutation {
194      get { return OffspringSelectionBeforeMutationParameter.Value; }
195      set { OffspringSelectionBeforeMutationParameter.Value = value; }
196    }
197    public IntValue SelectedParents {
198      get { return SelectedParentsParameter.Value; }
199      set { SelectedParentsParameter.Value = value; }
200    }
201    public MultiAnalyzer Analyzer {
202      get { return AnalyzerParameter.Value; }
203      set { AnalyzerParameter.Value = value; }
204    }
205    public IntValue MaximumEvaluatedSolutions {
206      get { return MaximumEvaluatedSolutionsParameter.Value; }
207      set { MaximumEvaluatedSolutionsParameter.Value = value; }
208    }
209    public bool FillPopulationWithParents {
210      get { return FillPopulationWithParentsParameter.Value.Value; }
211      set { FillPopulationWithParentsParameter.Value.Value = value; }
212    }
213    public ISubScopesQualityComparatorOperator SubScopesQualityComparator {
214      get { return SubScopesQualityComparatorParameter.Value; }
215      set { SubScopesQualityComparatorParameter.Value = value; }
216    }
217
218    private RandomCreator RandomCreator {
219      get { return (RandomCreator)OperatorGraph.InitialOperator; }
220    }
221    private SolutionsCreator SolutionsCreator {
222      get { return (SolutionsCreator)RandomCreator.Successor; }
223    }
224    public ISingleObjectiveSolutionSimilarityCalculator SimilarityCalculator {
225      get { return SimilarityCalculatorParameter.Value; }
226      set { SimilarityCalculatorParameter.Value = value; }
227    }
228    private VOffspringSelectionGeneticAlgorithmMainLoop MainLoop {
229      get { return FindMainLoop(SolutionsCreator.Successor); }
230    }
231    [Storable]
232    private BestAverageWorstQualityAnalyzer qualityAnalyzer;
233    [Storable]
234    private ValueAnalyzer selectionPressureAnalyzer;
235    [Storable]
236    private SuccessfulOffspringAnalyzer successfulOffspringAnalyzer;
237    #endregion
238
239    [StorableConstructor]
240    private VOffspringSelectionGeneticAlgorithm(bool deserializing) : base(deserializing) { }
241    [StorableHook(HookType.AfterDeserialization)]
242    private void AfterDeserialization() {
243      // BackwardsCompatibility3.3
244      #region Backwards compatible code, remove with 3.4
245      if (successfulOffspringAnalyzer == null)
246        successfulOffspringAnalyzer = new SuccessfulOffspringAnalyzer();
247      if (!Parameters.ContainsKey("ReevaluateElites")) {
248        Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", (BoolValue)new BoolValue(false).AsReadOnly()) { Hidden = true });
249      }
250      if (!Parameters.ContainsKey("FillPopulationWithParents"))
251        Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(false)) { Hidden = true });
252      #endregion
253
254      Initialize();
255    }
256    private VOffspringSelectionGeneticAlgorithm(VOffspringSelectionGeneticAlgorithm original, Cloner cloner)
257      : base(original, cloner) {
258      qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
259      selectionPressureAnalyzer = cloner.Clone(original.selectionPressureAnalyzer);
260      successfulOffspringAnalyzer = cloner.Clone(original.successfulOffspringAnalyzer);
261      Initialize();
262    }
263    public override IDeepCloneable Clone(Cloner cloner) {
264      return new VOffspringSelectionGeneticAlgorithm(this, cloner);
265    }
266    public VOffspringSelectionGeneticAlgorithm()
267      : base() {
268      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
269      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
270      Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions.", new IntValue(100)));
271      Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
272      Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
273      Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
274      Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
275      Parameters.Add(new ValueParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
276      Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true });
277      Parameters.Add(new ValueParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed.", new IntValue(1000)));
278      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved.", new DoubleValue(1)));
279      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactorLowerBound", "The lower bound of the comparison factor (start).", new DoubleValue(0)));
280      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactorUpperBound", "The upper bound of the comparison factor (end).", new DoubleValue(1)));
281      Parameters.Add(new OptionalConstrainedValueParameter<IDiscreteDoubleValueModifier>("ComparisonFactorModifier", "The operator used to modify the comparison factor.", new ItemSet<IDiscreteDoubleValueModifier>(new IDiscreteDoubleValueModifier[] { new LinearDiscreteDoubleValueModifier() }), new LinearDiscreteDoubleValueModifier()));
282      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm.", new DoubleValue(100)));
283      Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation.", new BoolValue(false)));
284      Parameters.Add(new ValueLookupParameter<IntValue>("SelectedParents", "How much parents should be selected each time the offspring selection step is performed until the population is filled. This parameter should be about the same or twice the size of PopulationSize for smaller problems, and less for large problems.", new IntValue(200)));
285      Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
286      Parameters.Add(new ValueParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions (approximately).", new IntValue(int.MaxValue)));
287      Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(false)) { Hidden = true });
288      Parameters.Add(new ConstrainedValueParameter<IOffspringSelector>("OffspringSelector", "The operator used as selection criterea for deciding which individuals are successful and which should be disgarded."));
289      Parameters.Add(new ConstrainedValueParameter<ISubScopesQualityComparatorOperator>("SubScopesQualityComparator", "The operator used to compare solution candidates with."));
290      Parameters.Add(new ConstrainedValueParameter<ISingleObjectiveSolutionSimilarityCalculator>("SimilarityCalculator", "The operator used to calculate the similarity between two solutions."));
291
292      RandomCreator randomCreator = new RandomCreator();
293      SolutionsCreator solutionsCreator = new SolutionsCreator();
294      SubScopesCounter subScopesCounter = new SubScopesCounter();
295      ResultsCollector resultsCollector = new ResultsCollector();
296      VOffspringSelectionGeneticAlgorithmMainLoop mainLoop = new VOffspringSelectionGeneticAlgorithmMainLoop();
297      OperatorGraph.InitialOperator = randomCreator;
298
299      randomCreator.RandomParameter.ActualName = "Random";
300      randomCreator.SeedParameter.ActualName = SeedParameter.Name;
301      randomCreator.SeedParameter.Value = null;
302      randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
303      randomCreator.SetSeedRandomlyParameter.Value = null;
304      randomCreator.Successor = solutionsCreator;
305
306      solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
307      solutionsCreator.Successor = subScopesCounter;
308
309      subScopesCounter.Name = "Initialize EvaluatedSolutions";
310      subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions";
311      subScopesCounter.Successor = resultsCollector;
312
313      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Evaluated Solutions", "", "EvaluatedSolutions"));
314      resultsCollector.ResultsParameter.ActualName = "Results";
315      resultsCollector.Successor = mainLoop;
316
317      mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
318      mainLoop.ComparisonFactorModifierParameter.ActualName = ComparisonFactorModifierParameter.Name;
319      mainLoop.ComparisonFactorParameter.ActualName = "ComparisonFactor";
320      mainLoop.ComparisonFactorStartParameter.ActualName = ComparisonFactorLowerBoundParameter.Name;
321      mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
322      mainLoop.ElitesParameter.ActualName = ElitesParameter.Name;
323      mainLoop.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
324      mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions";
325      mainLoop.MaximumGenerationsParameter.ActualName = MaximumGenerationsParameter.Name;
326      mainLoop.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
327      mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
328      mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
329      mainLoop.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
330      mainLoop.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
331      mainLoop.ResultsParameter.ActualName = "Results";
332      mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
333      mainLoop.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
334      mainLoop.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
335
336      foreach (ISelector selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(x => !(x is IMultiObjectiveSelector)).OrderBy(x => x.Name))
337        SelectorParameter.ValidValues.Add(selector);
338      ISelector proportionalSelector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("ProportionalSelector"));
339      if (proportionalSelector != null) SelectorParameter.Value = proportionalSelector;
340      ParameterizeSelectors();
341
342      foreach (IDiscreteDoubleValueModifier modifier in ApplicationManager.Manager.GetInstances<IDiscreteDoubleValueModifier>().OrderBy(x => x.Name))
343        ComparisonFactorModifierParameter.ValidValues.Add(modifier);
344      IDiscreteDoubleValueModifier linearModifier = ComparisonFactorModifierParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("LinearDiscreteDoubleValueModifier"));
345      if (linearModifier != null) ComparisonFactorModifierParameter.Value = linearModifier;
346      ParameterizeComparisonFactorModifiers();
347
348      foreach (IOffspringSelector selector in ApplicationManager.Manager.GetInstances<IOffspringSelector>().OrderBy(x => x.Name))
349        OffspringSelectorParameter.ValidValues.Add(selector);
350      IOffspringSelector standardOffspringSelector = OffspringSelectorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("StandardOffspringSelector"));
351      if (standardOffspringSelector != null) OffspringSelectorParameter.Value = standardOffspringSelector;
352      ParameterizeOffspringSelectors();
353
354      foreach (ISubScopesQualityComparatorOperator comparator in ApplicationManager.Manager.GetInstances<ISubScopesQualityComparatorOperator>().OrderBy(x => x.Name))
355        SubScopesQualityComparatorParameter.ValidValues.Add(comparator);
356      ISubScopesQualityComparatorOperator standardComparator = SubScopesQualityComparatorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("WeightedParentsQualityComparator"));
357      if (standardComparator != null) SubScopesQualityComparatorParameter.Value = standardComparator;
358      ParameterizeSubScopesQualityComparators();
359
360      qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
361      selectionPressureAnalyzer = new ValueAnalyzer();
362      successfulOffspringAnalyzer = new SuccessfulOffspringAnalyzer();
363      ParameterizeAnalyzers();
364      UpdateAnalyzers();
365
366      Initialize();
367    }
368
369    public override void Prepare() {
370      if (Problem != null) base.Prepare();
371    }
372
373    #region Events
374    protected override void OnProblemChanged() {
375      ParameterizeStochasticOperator(Problem.SolutionCreator);
376      ParameterizeStochasticOperator(Problem.Evaluator);
377      foreach (IOperator op in Problem.Operators.OfType<IOperator>()) ParameterizeStochasticOperator(op);
378      ParameterizeSolutionsCreator();
379      ParameterizMainLoop();
380      ParameterizeSelectors();
381      ParameterizeAnalyzers();
382      ParameterizeIterationBasedOperators();
383      UpdateCrossovers();
384      UpdateMutators();
385      UpdateAnalyzers();
386      ParameterizeSubScopesQualityComparators();
387      ParameterizeOffspringSelectors();
388      UpdateSimilarityCalculators();
389      Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
390      base.OnProblemChanged();
391    }
392
393    protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
394      ParameterizeStochasticOperator(Problem.SolutionCreator);
395      ParameterizeSolutionsCreator();
396      base.Problem_SolutionCreatorChanged(sender, e);
397    }
398    protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
399      ParameterizeStochasticOperator(Problem.Evaluator);
400      ParameterizeSolutionsCreator();
401      ParameterizMainLoop();
402      ParameterizeSelectors();
403      ParameterizeAnalyzers();
404      Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
405      base.Problem_EvaluatorChanged(sender, e);
406    }
407    protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
408      foreach (IOperator op in Problem.Operators.OfType<IOperator>()) ParameterizeStochasticOperator(op);
409      ParameterizeIterationBasedOperators();
410      UpdateCrossovers();
411      UpdateMutators();
412      UpdateAnalyzers();
413      base.Problem_OperatorsChanged(sender, e);
414    }
415    private void ElitesParameter_ValueChanged(object sender, EventArgs e) {
416      Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
417      ParameterizeSelectors();
418    }
419    private void Elites_ValueChanged(object sender, EventArgs e) {
420      ParameterizeSelectors();
421    }
422    private void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) {
423      PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
424      ParameterizeSelectors();
425    }
426    private void PopulationSize_ValueChanged(object sender, EventArgs e) {
427      ParameterizeSelectors();
428    }
429    private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
430      ParameterizMainLoop();
431      ParameterizeSelectors();
432      ParameterizeAnalyzers();
433      ParameterizeSimilarityCalculators();
434    }
435    #endregion
436
437    #region Helpers
438    private void Initialize() {
439      PopulationSizeParameter.ValueChanged += new EventHandler(PopulationSizeParameter_ValueChanged);
440      PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
441      ElitesParameter.ValueChanged += new EventHandler(ElitesParameter_ValueChanged);
442      Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
443      if (Problem != null) {
444        Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
445      }
446    }
447    private void ParameterizeSolutionsCreator() {
448      SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
449      SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name;
450    }
451    private void ParameterizMainLoop() {
452      MainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
453      MainLoop.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
454      MainLoop.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
455    }
456    private void ParameterizeStochasticOperator(IOperator op) {
457      if (op is IStochasticOperator)
458        ((IStochasticOperator)op).RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
459    }
460    private void ParameterizeSelectors() {
461      foreach (ISelector selector in SelectorParameter.ValidValues) {
462        selector.CopySelected = new BoolValue(true);
463        selector.NumberOfSelectedSubScopesParameter.Value = null;
464        selector.NumberOfSelectedSubScopesParameter.ActualName = SelectedParentsParameter.Name;
465        ParameterizeStochasticOperator(selector);
466      }
467      if (Problem != null) {
468        foreach (ISingleObjectiveSelector selector in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
469          selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
470          selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
471        }
472      }
473    }
474    private void ParameterizeOffspringSelectors() {
475      foreach (IOffspringSelector selector in OffspringSelectorParameter.ValidValues) {
476        //TODO: do we need to set these parameters? if yes, where?
477        // selector.CurrentSuccessRatioParameter.ActualName = CurrentSuccessRatioParameter.Name;
478        //selector.SelectionPressureParameter.ActualName = SelectionPressureParameter.Name;
479        selector.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
480        selector.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
481        selector.OffspringPopulationParameter.ActualName = "OffspringPopulation";
482        selector.OffspringPopulationWinnersParameter.ActualName = "OffspringPopulationWinners";
483        selector.SuccessfulOffspringParameter.ActualName = "SuccessfulOffspring";
484        selector.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
485      }
486    }
487    private void ParameterizeSubScopesQualityComparators() {
488      foreach (var comp in SubScopesQualityComparatorParameter.ValidValues) {
489        comp.ComparisonFactorParameter.ActualName = "ComparisonFactor";
490        if (Problem != null) {
491          comp.LeftSideParameter.ActualName = Problem.Evaluator.QualityParameter.Name;
492          comp.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
493          comp.RightSideParameter.ActualName = Problem.Evaluator.QualityParameter.Name;
494        }
495        comp.ResultParameter.ActualName = "SuccessfulOffspring";
496      }
497    }
498    private void ParameterizeAnalyzers() {
499      qualityAnalyzer.ResultsParameter.ActualName = "Results";
500      selectionPressureAnalyzer.Name = "SelectionPressure Analyzer";
501      selectionPressureAnalyzer.ResultsParameter.ActualName = "Results";
502      selectionPressureAnalyzer.ValueParameter.ActualName = "SelectionPressure";
503      selectionPressureAnalyzer.ValueParameter.Depth = 0;
504      selectionPressureAnalyzer.ValuesParameter.ActualName = "Selection Pressure History";
505      successfulOffspringAnalyzer.ResultsParameter.ActualName = "Results";
506      successfulOffspringAnalyzer.GenerationsParameter.ActualName = "Generations";
507      successfulOffspringAnalyzer.SuccessfulOffspringFlagParameter.Value.Value = "SuccessfulOffspring";
508      successfulOffspringAnalyzer.DepthParameter.Value = new IntValue(1);
509      if (Problem != null) {
510        qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
511        qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
512        qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
513      }
514    }
515    private void ParameterizeComparisonFactorModifiers() {
516      foreach (IDiscreteDoubleValueModifier modifier in ComparisonFactorModifierParameter.ValidValues) {
517        modifier.IndexParameter.ActualName = "Generations";
518        modifier.EndIndexParameter.ActualName = MaximumGenerationsParameter.Name;
519        modifier.EndValueParameter.ActualName = ComparisonFactorUpperBoundParameter.Name;
520        modifier.StartIndexParameter.Value = new IntValue(0);
521        modifier.StartValueParameter.ActualName = ComparisonFactorLowerBoundParameter.Name;
522        modifier.ValueParameter.ActualName = "ComparisonFactor";
523      }
524    }
525    private void ParameterizeIterationBasedOperators() {
526      if (Problem != null) {
527        foreach (IIterationBasedOperator op in Problem.Operators.OfType<IIterationBasedOperator>()) {
528          op.IterationsParameter.ActualName = "Generations";
529          op.MaximumIterationsParameter.ActualName = MaximumGenerationsParameter.Name;
530        }
531      }
532    }
533    private void UpdateCrossovers() {
534      ICrossover oldCrossover = CrossoverParameter.Value;
535      CrossoverParameter.ValidValues.Clear();
536      ICrossover defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
537
538      foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
539        CrossoverParameter.ValidValues.Add(crossover);
540
541      if (oldCrossover != null) {
542        ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
543        if (crossover != null) CrossoverParameter.Value = crossover;
544        else oldCrossover = null;
545      }
546      if (oldCrossover == null && defaultCrossover != null)
547        CrossoverParameter.Value = defaultCrossover;
548    }
549    private void UpdateMutators() {
550      IManipulator oldMutator = MutatorParameter.Value;
551      MutatorParameter.ValidValues.Clear();
552      foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
553        MutatorParameter.ValidValues.Add(mutator);
554      if (oldMutator != null) {
555        IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
556        if (mutator != null) MutatorParameter.Value = mutator;
557      }
558    }
559    private void UpdateAnalyzers() {
560      Analyzer.Operators.Clear();
561      if (Problem != null) {
562        foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
563          foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
564            param.Depth = 1;
565          Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
566        }
567      }
568      Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
569      Analyzer.Operators.Add(selectionPressureAnalyzer, selectionPressureAnalyzer.EnabledByDefault);
570      Analyzer.Operators.Add(successfulOffspringAnalyzer, successfulOffspringAnalyzer.EnabledByDefault);
571    }
572    private void UpdateSimilarityCalculators() {
573      ISingleObjectiveSolutionSimilarityCalculator oldSimilarityCalculator = SimilarityCalculatorParameter.Value;
574      SimilarityCalculatorParameter.ValidValues.Clear();
575      ISingleObjectiveSolutionSimilarityCalculator defaultSimilarityCalculator = Problem.Operators.OfType<ISingleObjectiveSolutionSimilarityCalculator>().FirstOrDefault();
576
577      SimilarityCalculatorParameter.ValidValues.Add(new QualitySimilarityCalculator { QualityVariableName = Problem.Evaluator.QualityParameter.ActualName });
578      SimilarityCalculatorParameter.ValidValues.Add(new NoSimilarityCalculator());
579
580      foreach (ISingleObjectiveSolutionSimilarityCalculator similarityCalculator in Problem.Operators.OfType<ISingleObjectiveSolutionSimilarityCalculator>())
581        SimilarityCalculatorParameter.ValidValues.Add(similarityCalculator);
582
583      if (oldSimilarityCalculator != null) {
584        ISingleObjectiveSolutionSimilarityCalculator similarityCalculator = SimilarityCalculatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldSimilarityCalculator.GetType());
585        if (similarityCalculator != null) SimilarityCalculatorParameter.Value = similarityCalculator;
586        else oldSimilarityCalculator = null;
587      }
588      if (oldSimilarityCalculator == null && defaultSimilarityCalculator != null)
589        SimilarityCalculatorParameter.Value = defaultSimilarityCalculator;
590    }
591    private void ParameterizeSimilarityCalculators() {
592      foreach (ISingleObjectiveSolutionSimilarityCalculator calc in SimilarityCalculatorParameter.ValidValues) {
593        calc.QualityVariableName = Problem.Evaluator.QualityParameter.ActualName;
594      }
595    }
596    private VOffspringSelectionGeneticAlgorithmMainLoop FindMainLoop(IOperator start) {
597      IOperator mainLoop = start;
598      while (mainLoop != null && !(mainLoop is VOffspringSelectionGeneticAlgorithmMainLoop))
599        mainLoop = ((SingleSuccessorOperator)mainLoop).Successor;
600      if (mainLoop == null) return null;
601      else return (VOffspringSelectionGeneticAlgorithmMainLoop)mainLoop;
602    }
603    #endregion
604  }
605}
Note: See TracBrowser for help on using the repository browser.