1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.VOffspringSelectionGeneticAlgorithm {
|
---|
33 | [Item("EliteWeightedParentsQualityComparator", "M2")]
|
---|
34 | [StorableClass]
|
---|
35 | public class EliteWeightedParentsQualityComparator : SingleSuccessorOperator, ISubScopesQualityComparatorOperator {
|
---|
36 | public IValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
37 | get { return (IValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
38 | }
|
---|
39 | public ILookupParameter<DoubleValue> LeftSideParameter {
|
---|
40 | get { return (ILookupParameter<DoubleValue>)Parameters["LeftSide"]; }
|
---|
41 | }
|
---|
42 | public ILookupParameter<ItemArray<DoubleValue>> RightSideParameter {
|
---|
43 | get { return (ILookupParameter<ItemArray<DoubleValue>>)Parameters["RightSide"]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<BoolValue> ResultParameter {
|
---|
46 | get { return (ILookupParameter<BoolValue>)Parameters["Result"]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<BoolValue> ResultImprovementParameter {
|
---|
49 | get { return (ILookupParameter<BoolValue>)Parameters["ResultImprovement"]; }
|
---|
50 | }
|
---|
51 | public ValueLookupParameter<DoubleValue> ComparisonFactorParameter {
|
---|
52 | get { return (ValueLookupParameter<DoubleValue>)Parameters["ComparisonFactor"]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | [StorableConstructor]
|
---|
56 | protected EliteWeightedParentsQualityComparator(bool deserializing) : base(deserializing) { }
|
---|
57 | protected EliteWeightedParentsQualityComparator(EliteWeightedParentsQualityComparator original, Cloner cloner) : base(original, cloner) { }
|
---|
58 | public EliteWeightedParentsQualityComparator()
|
---|
59 | : base() {
|
---|
60 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, false otherwise"));
|
---|
61 | Parameters.Add(new LookupParameter<DoubleValue>("LeftSide", "The quality of the child."));
|
---|
62 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("RightSide", "The qualities of the parents."));
|
---|
63 | Parameters.Add(new LookupParameter<BoolValue>("Result", "The result of the comparison: True means Quality is better, False means it is worse than parents."));
|
---|
64 | Parameters.Add(new LookupParameter<BoolValue>("ResultImprovement", "A solution has improved if it is better than the worse parent."));
|
---|
65 | Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactor", "Determines if the quality should be compared to the better parent (1.0), to the worse (0.0) or to any linearly interpolated value between them."));
|
---|
66 | }
|
---|
67 |
|
---|
68 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
69 | return new EliteWeightedParentsQualityComparator(this, cloner);
|
---|
70 | }
|
---|
71 |
|
---|
72 | public override IOperation Apply() {
|
---|
73 | ItemArray<DoubleValue> rightQualities = RightSideParameter.ActualValue;
|
---|
74 | if (rightQualities.Length < 1) throw new InvalidOperationException(Name + ": No subscopes found.");
|
---|
75 | double compFact = ComparisonFactorParameter.ActualValue.Value;
|
---|
76 | bool maximization = MaximizationParameter.ActualValue.Value;
|
---|
77 | double leftQuality = LeftSideParameter.ActualValue.Value;
|
---|
78 |
|
---|
79 | double threshold = 0;
|
---|
80 |
|
---|
81 | #region Calculate threshold
|
---|
82 | if (rightQualities.Length == 2) { // this case will probably be used most often
|
---|
83 | double minQuality = Math.Min(rightQualities[0].Value, rightQualities[1].Value);
|
---|
84 | double maxQuality = Math.Max(rightQualities[0].Value, rightQualities[1].Value);
|
---|
85 | if (maximization)
|
---|
86 | threshold = minQuality + (maxQuality - minQuality) * compFact;
|
---|
87 | else
|
---|
88 | threshold = maxQuality - (maxQuality - minQuality) * compFact;
|
---|
89 | } else if (rightQualities.Length == 1) { // case for just one parent
|
---|
90 | threshold = rightQualities[0].Value;
|
---|
91 | } else { // general case extended to 3 or more parents
|
---|
92 | List<double> sortedQualities = rightQualities.Select(x => x.Value).ToList();
|
---|
93 | sortedQualities.Sort();
|
---|
94 | double minimumQuality = sortedQualities.First();
|
---|
95 |
|
---|
96 | double integral = 0;
|
---|
97 | for (int i = 0; i < sortedQualities.Count - 1; i++) {
|
---|
98 | integral += (sortedQualities[i] + sortedQualities[i + 1]) / 2.0; // sum of the trapezoid
|
---|
99 | }
|
---|
100 | integral -= minimumQuality * sortedQualities.Count;
|
---|
101 | if (integral == 0) threshold = sortedQualities[0]; // all qualities are equal
|
---|
102 | else {
|
---|
103 | double selectedArea = integral * (maximization ? compFact : (1 - compFact));
|
---|
104 | integral = 0;
|
---|
105 | for (int i = 0; i < sortedQualities.Count - 1; i++) {
|
---|
106 | double currentSliceArea = (sortedQualities[i] + sortedQualities[i + 1]) / 2.0;
|
---|
107 | double windowedSliceArea = currentSliceArea - minimumQuality;
|
---|
108 | if (windowedSliceArea == 0) continue;
|
---|
109 | integral += windowedSliceArea;
|
---|
110 | if (integral >= selectedArea) {
|
---|
111 | double factor = 1 - ((integral - selectedArea) / (windowedSliceArea));
|
---|
112 | threshold = sortedQualities[i] + (sortedQualities[i + 1] - sortedQualities[i]) * factor;
|
---|
113 | break;
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|
118 | #endregion
|
---|
119 |
|
---|
120 | bool result = maximization && leftQuality > threshold || !maximization && leftQuality < threshold;
|
---|
121 | BoolValue resultValue = ResultParameter.ActualValue;
|
---|
122 | if (resultValue == null) {
|
---|
123 | ResultParameter.ActualValue = new BoolValue(result);
|
---|
124 | } else {
|
---|
125 | resultValue.Value = result;
|
---|
126 | }
|
---|
127 |
|
---|
128 | bool resultImprovement = maximization && leftQuality > rightQualities.Min(x => x.Value) ||
|
---|
129 | !maximization && leftQuality < rightQualities.Max(x => x.Value);
|
---|
130 | BoolValue resultImprovementValue = ResultImprovementParameter.ActualValue;
|
---|
131 | if (resultImprovementValue == null) {
|
---|
132 | ResultImprovementParameter.ActualValue = new BoolValue(resultImprovement);
|
---|
133 | } else {
|
---|
134 | resultImprovementValue.Value = resultImprovement;
|
---|
135 | }
|
---|
136 |
|
---|
137 | return base.Apply();
|
---|
138 | }
|
---|
139 | }
|
---|
140 | }
|
---|