1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Problems.DataAnalysis.Classification {
|
---|
38 | [Item("ValidationBestSymbolicClassificationSolutionAnalyzer", "An operator that analyzes the validation best symbolic classification solution.")]
|
---|
39 | [StorableClass]
|
---|
40 | public class ValidationBestSymbolicClassificationSolutionAnalyzer : SingleSuccessorOperator, ISymbolicClassificationAnalyzer {
|
---|
41 | private const string MaximizationParameterName = "Maximization";
|
---|
42 | private const string GenerationsParameterName = "Generations";
|
---|
43 | private const string RandomParameterName = "Random";
|
---|
44 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
45 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
46 |
|
---|
47 | private const string ClassificationProblemDataParameterName = "ClassificationProblemData";
|
---|
48 | private const string EvaluatorParameterName = "Evaluator";
|
---|
49 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
50 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
51 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
52 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
53 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
54 | private const string CalculateSolutionComplexityParameterName = "CalculateSolutionComplexity";
|
---|
55 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
56 |
|
---|
57 | private const string ResultsParameterName = "Results";
|
---|
58 | private const string BestValidationQualityParameterName = "Best validation quality";
|
---|
59 | private const string BestValidationSolutionParameterName = "Best validation solution";
|
---|
60 | private const string BestSolutionAccuracyTrainingParameterName = "Best solution accuracy (training)";
|
---|
61 | private const string BestSolutionAccuracyTestParameterName = "Best solution accuracy (test)";
|
---|
62 | private const string BestSolutionLengthParameterName = "Best solution length (on validation set)";
|
---|
63 | private const string BestSolutionHeightParameterName = "Best solution height (on validation set)";
|
---|
64 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
65 |
|
---|
66 | #region parameter properties
|
---|
67 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
68 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
69 | }
|
---|
70 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
71 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
72 | }
|
---|
73 | public ILookupParameter<IRandom> RandomParameter {
|
---|
74 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
75 | }
|
---|
76 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
77 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
78 | }
|
---|
79 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
80 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
81 | }
|
---|
82 | public ILookupParameter<ClassificationProblemData> ClassificationProblemDataParameter {
|
---|
83 | get { return (ILookupParameter<ClassificationProblemData>)Parameters[ClassificationProblemDataParameterName]; }
|
---|
84 | }
|
---|
85 | public ILookupParameter<ISymbolicClassificationEvaluator> EvaluatorParameter {
|
---|
86 | get { return (ILookupParameter<ISymbolicClassificationEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
87 | }
|
---|
88 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
89 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
90 | }
|
---|
91 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
92 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
93 | }
|
---|
94 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
95 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
96 | }
|
---|
97 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
98 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
99 | }
|
---|
100 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
101 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
102 | }
|
---|
103 | public IValueLookupParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
104 | get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
105 | }
|
---|
106 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
107 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
108 | }
|
---|
109 | public IValueParameter<BoolValue> CalculateSolutionComplexityParameter {
|
---|
110 | get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionComplexityParameterName]; }
|
---|
111 | }
|
---|
112 |
|
---|
113 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
114 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
115 | }
|
---|
116 | public ILookupParameter<DoubleValue> BestValidationQualityParameter {
|
---|
117 | get { return (ILookupParameter<DoubleValue>)Parameters[BestValidationQualityParameterName]; }
|
---|
118 | }
|
---|
119 | public ILookupParameter<SymbolicClassificationSolution> BestValidationSolutionParameter {
|
---|
120 | get { return (ILookupParameter<SymbolicClassificationSolution>)Parameters[BestValidationSolutionParameterName]; }
|
---|
121 | }
|
---|
122 | public ILookupParameter<DoubleValue> BestSolutionAccuracyTrainingParameter {
|
---|
123 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionAccuracyTrainingParameterName]; }
|
---|
124 | }
|
---|
125 | public ILookupParameter<DoubleValue> BestSolutionAccuracyTestParameter {
|
---|
126 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionAccuracyTestParameterName]; }
|
---|
127 | }
|
---|
128 | public ILookupParameter<IntValue> BestSolutionLengthParameter {
|
---|
129 | get { return (ILookupParameter<IntValue>)Parameters[BestSolutionLengthParameterName]; }
|
---|
130 | }
|
---|
131 | public ILookupParameter<IntValue> BestSolutionHeightParameter {
|
---|
132 | get { return (ILookupParameter<IntValue>)Parameters[BestSolutionHeightParameterName]; }
|
---|
133 | }
|
---|
134 | #endregion
|
---|
135 | #region properties
|
---|
136 | public BoolValue Maximization {
|
---|
137 | get { return MaximizationParameter.ActualValue; }
|
---|
138 | }
|
---|
139 | public IntValue Generations {
|
---|
140 | get { return GenerationsParameter.ActualValue; }
|
---|
141 | }
|
---|
142 | public IRandom Random {
|
---|
143 | get { return RandomParameter.ActualValue; }
|
---|
144 | }
|
---|
145 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
146 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
147 | }
|
---|
148 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
149 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
150 | }
|
---|
151 |
|
---|
152 | public ClassificationProblemData ClassificationProblemData {
|
---|
153 | get { return ClassificationProblemDataParameter.ActualValue; }
|
---|
154 | }
|
---|
155 | public ISymbolicClassificationEvaluator Evaluator {
|
---|
156 | get { return EvaluatorParameter.ActualValue; }
|
---|
157 | }
|
---|
158 | public IntValue ValidiationSamplesStart {
|
---|
159 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
160 | }
|
---|
161 | public IntValue ValidationSamplesEnd {
|
---|
162 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
163 | }
|
---|
164 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
165 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
166 | }
|
---|
167 | public DoubleValue UpperEstimationLimit {
|
---|
168 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
169 | }
|
---|
170 | public DoubleValue LowerEstimationLimit {
|
---|
171 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
172 | }
|
---|
173 | public BoolValue ApplyLinearScaling {
|
---|
174 | get { return ApplyLinearScalingParameter.ActualValue; }
|
---|
175 | set { ApplyLinearScalingParameter.ActualValue = value; }
|
---|
176 | }
|
---|
177 | public DataTable VariableFrequencies {
|
---|
178 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
179 | }
|
---|
180 | public BoolValue CalculateSolutionComplexity {
|
---|
181 | get { return CalculateSolutionComplexityParameter.Value; }
|
---|
182 | set { CalculateSolutionComplexityParameter.Value = value; }
|
---|
183 | }
|
---|
184 |
|
---|
185 | public ResultCollection Results {
|
---|
186 | get { return ResultsParameter.ActualValue; }
|
---|
187 | }
|
---|
188 | public DoubleValue BestValidationQuality {
|
---|
189 | get { return BestValidationQualityParameter.ActualValue; }
|
---|
190 | protected set { BestValidationQualityParameter.ActualValue = value; }
|
---|
191 | }
|
---|
192 | public SymbolicClassificationSolution BestValidationSolution {
|
---|
193 | get { return BestValidationSolutionParameter.ActualValue; }
|
---|
194 | protected set { BestValidationSolutionParameter.ActualValue = value; }
|
---|
195 | }
|
---|
196 | public DoubleValue BestSolutionAccuracyTraining {
|
---|
197 | get { return BestSolutionAccuracyTrainingParameter.ActualValue; }
|
---|
198 | protected set { BestSolutionAccuracyTrainingParameter.ActualValue = value; }
|
---|
199 | }
|
---|
200 | public DoubleValue BestSolutionAccuracyTest {
|
---|
201 | get { return BestSolutionAccuracyTestParameter.ActualValue; }
|
---|
202 | protected set { BestSolutionAccuracyTestParameter.ActualValue = value; }
|
---|
203 | }
|
---|
204 | public IntValue BestSolutionLength {
|
---|
205 | get { return BestSolutionLengthParameter.ActualValue; }
|
---|
206 | set { BestSolutionLengthParameter.ActualValue = value; }
|
---|
207 | }
|
---|
208 | public IntValue BestSolutionHeight {
|
---|
209 | get { return BestSolutionHeightParameter.ActualValue; }
|
---|
210 | set { BestSolutionHeightParameter.ActualValue = value; }
|
---|
211 | }
|
---|
212 | #endregion
|
---|
213 |
|
---|
214 | [StorableConstructor]
|
---|
215 | protected ValidationBestSymbolicClassificationSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
216 | protected ValidationBestSymbolicClassificationSolutionAnalyzer(ValidationBestSymbolicClassificationSolutionAnalyzer original, Cloner cloner)
|
---|
217 | : base(original, cloner) {
|
---|
218 | }
|
---|
219 | public ValidationBestSymbolicClassificationSolutionAnalyzer()
|
---|
220 | : base() {
|
---|
221 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
222 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
223 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
224 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
225 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
226 | Parameters.Add(new LookupParameter<ClassificationProblemData>(ClassificationProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
227 | Parameters.Add(new LookupParameter<ISymbolicClassificationEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
228 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
229 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
230 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
231 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
232 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
233 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
234 | Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(true)));
|
---|
235 | Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(false)));
|
---|
236 |
|
---|
237 | Parameters.Add(new ValueLookupParameter<ResultCollection>(ResultsParameterName, "The results collection where the analysis values should be stored."));
|
---|
238 | Parameters.Add(new LookupParameter<DoubleValue>(BestValidationQualityParameterName, "The validation quality of the best solution in the current run."));
|
---|
239 | Parameters.Add(new LookupParameter<SymbolicClassificationSolution>(BestValidationSolutionParameterName, "The best solution on the validation data found in the current run."));
|
---|
240 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionAccuracyTrainingParameterName, "The training accuracy of the best solution."));
|
---|
241 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionAccuracyTestParameterName, "The test accuracy of the best solution."));
|
---|
242 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic classification solution."));
|
---|
243 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic classification solution."));
|
---|
244 | }
|
---|
245 |
|
---|
246 | [StorableHook(HookType.AfterDeserialization)]
|
---|
247 | private void AfterDeserialization() {
|
---|
248 | if (!Parameters.ContainsKey(CalculateSolutionComplexityParameterName)) {
|
---|
249 | Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(true)));
|
---|
250 | }
|
---|
251 | if (!Parameters.ContainsKey(BestSolutionLengthParameterName)) {
|
---|
252 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic classification solution."));
|
---|
253 | }
|
---|
254 | if (!Parameters.ContainsKey(BestSolutionHeightParameterName)) {
|
---|
255 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic classification solution."));
|
---|
256 | }
|
---|
257 | if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
|
---|
258 | Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(false)));
|
---|
259 | }
|
---|
260 | }
|
---|
261 |
|
---|
262 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
263 | return new ValidationBestSymbolicClassificationSolutionAnalyzer(this, cloner);
|
---|
264 | }
|
---|
265 |
|
---|
266 | public override IOperation Apply() {
|
---|
267 | var trees = SymbolicExpressionTree;
|
---|
268 | string targetVariable = ClassificationProblemData.TargetVariable.Value;
|
---|
269 |
|
---|
270 | // select a random subset of rows in the validation set
|
---|
271 | int validationStart = ValidiationSamplesStart.Value;
|
---|
272 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
273 | int seed = Random.Next();
|
---|
274 | int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
275 | if (count == 0) count = 1;
|
---|
276 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count)
|
---|
277 | .Where(row => row < ClassificationProblemData.TestSamplesStart.Value || ClassificationProblemData.TestSamplesEnd.Value <= row);
|
---|
278 |
|
---|
279 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
280 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
281 |
|
---|
282 | double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
283 | SymbolicExpressionTree bestTree = null;
|
---|
284 |
|
---|
285 | foreach (var tree in trees) {
|
---|
286 | double quality = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, tree,
|
---|
287 | lowerEstimationLimit, upperEstimationLimit, ClassificationProblemData.Dataset,
|
---|
288 | targetVariable, rows);
|
---|
289 |
|
---|
290 | if ((Maximization.Value && quality > bestQuality) ||
|
---|
291 | (!Maximization.Value && quality < bestQuality)) {
|
---|
292 | bestQuality = quality;
|
---|
293 | bestTree = tree;
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | // if the best validation tree is better than the current best solution => update
|
---|
298 | bool newBest =
|
---|
299 | BestValidationQuality == null ||
|
---|
300 | (Maximization.Value && bestQuality > BestValidationQuality.Value) ||
|
---|
301 | (!Maximization.Value && bestQuality < BestValidationQuality.Value);
|
---|
302 | if (newBest) {
|
---|
303 | if (ApplyLinearScaling.Value) {
|
---|
304 | double alpha, beta;
|
---|
305 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
|
---|
306 | lowerEstimationLimit, upperEstimationLimit,
|
---|
307 | ClassificationProblemData.Dataset, targetVariable,
|
---|
308 | ClassificationProblemData.TrainingIndizes, out beta, out alpha);
|
---|
309 |
|
---|
310 | // scale tree for solution
|
---|
311 | bestTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
|
---|
312 | }
|
---|
313 | var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
|
---|
314 | bestTree);
|
---|
315 |
|
---|
316 | if (BestValidationSolution == null) {
|
---|
317 | BestValidationSolution = new SymbolicClassificationSolution(ClassificationProblemData, model, LowerEstimationLimit.Value, UpperEstimationLimit.Value);
|
---|
318 | BestValidationSolution.Name = BestValidationSolutionParameterName;
|
---|
319 | BestValidationSolution.Description = "Best solution on validation partition found over the whole run.";
|
---|
320 | BestValidationQuality = new DoubleValue(bestQuality);
|
---|
321 | } else {
|
---|
322 | BestValidationSolution.Model = model;
|
---|
323 | BestValidationQuality.Value = bestQuality;
|
---|
324 | }
|
---|
325 |
|
---|
326 | UpdateBestSolutionResults();
|
---|
327 | }
|
---|
328 | return base.Apply();
|
---|
329 | }
|
---|
330 |
|
---|
331 | private void UpdateBestSolutionResults() {
|
---|
332 | if (CalculateSolutionComplexity.Value) {
|
---|
333 | BestSolutionLength = new IntValue(BestValidationSolution.Model.SymbolicExpressionTree.Size);
|
---|
334 | BestSolutionHeight = new IntValue(BestValidationSolution.Model.SymbolicExpressionTree.Height);
|
---|
335 | if (!Results.ContainsKey(BestSolutionLengthParameterName)) {
|
---|
336 | Results.Add(new Result(BestSolutionLengthParameterName, "Length of the best solution on the validation set", new IntValue()));
|
---|
337 | Results.Add(new Result(BestSolutionHeightParameterName, "Height of the best solution on the validation set", new IntValue()));
|
---|
338 | }
|
---|
339 | Results[BestSolutionLengthParameterName].Value = BestSolutionLength;
|
---|
340 | Results[BestSolutionHeightParameterName].Value = BestSolutionHeight;
|
---|
341 | }
|
---|
342 |
|
---|
343 | BestSymbolicRegressionSolutionAnalyzer.UpdateBestSolutionResults(BestValidationSolution, ClassificationProblemData, Results, Generations, VariableFrequencies);
|
---|
344 |
|
---|
345 | IEnumerable<double> trainingValues = ClassificationProblemData.Dataset.GetEnumeratedVariableValues(
|
---|
346 | ClassificationProblemData.TargetVariable.Value, ClassificationProblemData.TrainingIndizes);
|
---|
347 | IEnumerable<double> testValues = ClassificationProblemData.Dataset.GetEnumeratedVariableValues(
|
---|
348 | ClassificationProblemData.TargetVariable.Value, ClassificationProblemData.TestIndizes);
|
---|
349 |
|
---|
350 | OnlineAccuracyEvaluator accuracyEvaluator = new OnlineAccuracyEvaluator();
|
---|
351 | var originalEnumerator = trainingValues.GetEnumerator();
|
---|
352 | var estimatedEnumerator = BestValidationSolution.EstimatedTrainingClassValues.GetEnumerator();
|
---|
353 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
354 | accuracyEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
355 | }
|
---|
356 | double trainingAccuracy = accuracyEvaluator.Accuracy;
|
---|
357 |
|
---|
358 | accuracyEvaluator.Reset();
|
---|
359 | originalEnumerator = testValues.GetEnumerator();
|
---|
360 | estimatedEnumerator = BestValidationSolution.EstimatedTestClassValues.GetEnumerator();
|
---|
361 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
362 | accuracyEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
363 | }
|
---|
364 | double testAccuracy = accuracyEvaluator.Accuracy;
|
---|
365 |
|
---|
366 | if (!Results.ContainsKey(BestSolutionAccuracyTrainingParameterName)) {
|
---|
367 | BestSolutionAccuracyTraining = new DoubleValue(trainingAccuracy);
|
---|
368 | BestSolutionAccuracyTest = new DoubleValue(testAccuracy);
|
---|
369 |
|
---|
370 | Results.Add(new Result(BestSolutionAccuracyTrainingParameterName, BestSolutionAccuracyTraining));
|
---|
371 | Results.Add(new Result(BestSolutionAccuracyTestParameterName, BestSolutionAccuracyTest));
|
---|
372 | } else {
|
---|
373 | BestSolutionAccuracyTraining.Value = trainingAccuracy;
|
---|
374 | BestSolutionAccuracyTest.Value = testAccuracy;
|
---|
375 | }
|
---|
376 | }
|
---|
377 | }
|
---|
378 | }
|
---|