Free cookie consent management tool by TermsFeed Policy Generator

source: branches/VNS/HeuristicLab.Problems.DataAnalysis.Classification/3.3/Symbolic/Analyzer/TrainingBestSymbolicClassificationSolutionAnalyzer.cs @ 5723

Last change on this file since 5723 was 5445, checked in by swagner, 14 years ago

Updated year of copyrights (#1406)

File size: 27.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Analysis;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Operators;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.Problems.DataAnalysis.Symbolic;
34using HeuristicLab.Problems.DataAnalysis.Evaluators;
35using HeuristicLab.Problems.DataAnalysis.Classification;
36using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
37using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
38
39namespace HeuristicLab.Problems.DataAnalysis.Classification.Symbolic.Analyzers {
40  /// <summary>
41  /// An operator that analyzes the training best scaled symbolic classification solution.
42  /// </summary>
43  [Item("TrainingBestSymbolicClassificationSolutionAnalyzer", "An operator that analyzes the training best scaled symbolic classification solution.")]
44  [StorableClass]
45  public sealed class TrainingBestSymbolicClassificationSolutionAnalyzer : SingleSuccessorOperator, ISymbolicClassificationAnalyzer {
46    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
47    private const string QualityParameterName = "Quality";
48    private const string MaximizationParameterName = "Maximization";
49    private const string CalculateSolutionComplexityParameterName = "CalculateSolutionComplexity";
50    private const string CalculateSolutionAccuracyParameterName = "CalculateSolutionAccuracy";
51    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
52    private const string ProblemDataParameterName = "ClassificationProblemData";
53    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
54    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
55    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
56    private const string BestSolutionParameterName = "Best training solution";
57    private const string BestSolutionQualityParameterName = "Best training solution quality";
58    private const string BestSolutionLengthParameterName = "Best training solution length";
59    private const string BestSolutionHeightParameterName = "Best training solution height";
60    private const string BestSolutionVariablesParameterName = "Best training solution variables";
61    private const string BestSolutionTrainingRSquaredParameterName = "Best training solution R² (training)";
62    private const string BestSolutionTestRSquaredParameterName = "Best training solution R² (test)";
63    private const string BestSolutionTrainingMseParameterName = "Best training solution mean squared error (training)";
64    private const string BestSolutionTestMseParameterName = "Best training solution mean squared error (test)";
65    private const string BestSolutionTrainingRelativeErrorParameterName = "Best training solution relative error (training)";
66    private const string BestSolutionTestRelativeErrorParameterName = "Best training solution relative error (test)";
67    private const string BestSolutionAccuracyTrainingParameterName = "Best training solution accuracy (training)";
68    private const string BestSolutionAccuracyTestParameterName = "Best training solution accuracy (test)";
69    private const string ResultsParameterName = "Results";
70
71    #region parameter properties
72    public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
73      get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
74    }
75    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
76      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
77    }
78    public ILookupParameter<BoolValue> MaximizationParameter {
79      get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
80    }
81    public IValueParameter<BoolValue> CalculateSolutionComplexityParameter {
82      get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionComplexityParameterName]; }
83    }
84    public IValueParameter<BoolValue> CalculateSolutionAccuracyParameter {
85      get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionAccuracyParameterName]; }
86    }
87    public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
88      get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
89    }
90    public IValueLookupParameter<ClassificationProblemData> ProblemDataParameter {
91      get { return (IValueLookupParameter<ClassificationProblemData>)Parameters[ProblemDataParameterName]; }
92    }
93    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
94      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
95    }
96    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
97      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
98    }
99    public IValueLookupParameter<BoolValue> ApplyLinearScalingParameter {
100      get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
101    }
102
103    public ILookupParameter<SymbolicClassificationSolution> BestSolutionParameter {
104      get { return (ILookupParameter<SymbolicClassificationSolution>)Parameters[BestSolutionParameterName]; }
105    }
106    public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
107      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
108    }
109    public ILookupParameter<IntValue> BestSolutionLengthParameter {
110      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionLengthParameterName]; }
111    }
112    public ILookupParameter<IntValue> BestSolutionHeightParameter {
113      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionHeightParameterName]; }
114    }
115    public ILookupParameter<IntValue> BestSolutionVariablesParameter {
116      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionVariablesParameterName]; }
117    }
118    public ILookupParameter<DoubleValue> BestSolutionTrainingRSquaredParameter {
119      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingRSquaredParameterName]; }
120    }
121    public ILookupParameter<DoubleValue> BestSolutionTestRSquaredParameter {
122      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestRSquaredParameterName]; }
123    }
124    public ILookupParameter<DoubleValue> BestSolutionTrainingMseParameter {
125      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingMseParameterName]; }
126    }
127    public ILookupParameter<DoubleValue> BestSolutionTestMseParameter {
128      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestMseParameterName]; }
129    }
130    public ILookupParameter<DoubleValue> BestSolutionTrainingRelativeErrorParameter {
131      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingRelativeErrorParameterName]; }
132    }
133    public ILookupParameter<DoubleValue> BestSolutionTestRelativeErrorParameter {
134      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestRelativeErrorParameterName]; }
135    }
136    public ILookupParameter<DoubleValue> BestSolutionTrainingAccuracyParameter {
137      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionAccuracyTrainingParameterName]; }
138    }
139    public ILookupParameter<DoubleValue> BestSolutionTestAccuracyParameter {
140      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionAccuracyTestParameterName]; }
141    }
142    public ILookupParameter<ResultCollection> ResultsParameter {
143      get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
144    }
145    #endregion
146    #region properties
147    public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
148      get { return SymbolicExpressionTreeParameter.ActualValue; }
149    }
150    public ItemArray<DoubleValue> Quality {
151      get { return QualityParameter.ActualValue; }
152    }
153    public BoolValue Maximization {
154      get { return MaximizationParameter.ActualValue; }
155    }
156    public BoolValue CalculateSolutionComplexity {
157      get { return CalculateSolutionComplexityParameter.Value; }
158      set { CalculateSolutionComplexityParameter.Value = value; }
159    }
160    public BoolValue CalculateSolutionAccuracy {
161      get { return CalculateSolutionAccuracyParameter.Value; }
162      set { CalculateSolutionAccuracyParameter.Value = value; }
163    }
164    public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
165      get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
166    }
167    public ClassificationProblemData ProblemData {
168      get { return ProblemDataParameter.ActualValue; }
169    }
170    public DoubleValue UpperEstimationLimit {
171      get { return UpperEstimationLimitParameter.ActualValue; }
172    }
173    public DoubleValue LowerEstimationLimit {
174      get { return LowerEstimationLimitParameter.ActualValue; }
175    }
176    public BoolValue ApplyLinearScaling {
177      get { return ApplyLinearScalingParameter.ActualValue; }
178      set { ApplyLinearScalingParameter.ActualValue = value; }
179    }
180
181    public ResultCollection Results {
182      get { return ResultsParameter.ActualValue; }
183    }
184    public SymbolicClassificationSolution BestSolution {
185      get { return BestSolutionParameter.ActualValue; }
186      set { BestSolutionParameter.ActualValue = value; }
187    }
188    public DoubleValue BestSolutionQuality {
189      get { return BestSolutionQualityParameter.ActualValue; }
190      set { BestSolutionQualityParameter.ActualValue = value; }
191    }
192    public IntValue BestSolutionLength {
193      get { return BestSolutionLengthParameter.ActualValue; }
194      set { BestSolutionLengthParameter.ActualValue = value; }
195    }
196    public IntValue BestSolutionHeight {
197      get { return BestSolutionHeightParameter.ActualValue; }
198      set { BestSolutionHeightParameter.ActualValue = value; }
199    }
200    public IntValue BestSolutionVariables {
201      get { return BestSolutionVariablesParameter.ActualValue; }
202      set { BestSolutionVariablesParameter.ActualValue = value; }
203    }
204    public DoubleValue BestSolutionTrainingRSquared {
205      get { return BestSolutionTrainingRSquaredParameter.ActualValue; }
206      set { BestSolutionTrainingRSquaredParameter.ActualValue = value; }
207    }
208    public DoubleValue BestSolutionTestRSquared {
209      get { return BestSolutionTestRSquaredParameter.ActualValue; }
210      set { BestSolutionTestRSquaredParameter.ActualValue = value; }
211    }
212    public DoubleValue BestSolutionTrainingMse {
213      get { return BestSolutionTrainingMseParameter.ActualValue; }
214      set { BestSolutionTrainingMseParameter.ActualValue = value; }
215    }
216    public DoubleValue BestSolutionTestMse {
217      get { return BestSolutionTestMseParameter.ActualValue; }
218      set { BestSolutionTestMseParameter.ActualValue = value; }
219    }
220    public DoubleValue BestSolutionTrainingRelativeError {
221      get { return BestSolutionTrainingRelativeErrorParameter.ActualValue; }
222      set { BestSolutionTrainingRelativeErrorParameter.ActualValue = value; }
223    }
224    public DoubleValue BestSolutionTestRelativeError {
225      get { return BestSolutionTestRelativeErrorParameter.ActualValue; }
226      set { BestSolutionTestRelativeErrorParameter.ActualValue = value; }
227    }
228    public DoubleValue BestSolutionTrainingAccuracy {
229      get { return BestSolutionTrainingAccuracyParameter.ActualValue; }
230      set { BestSolutionTrainingAccuracyParameter.ActualValue = value; }
231    }
232    public DoubleValue BestSolutionTestAccuracy {
233      get { return BestSolutionTestAccuracyParameter.ActualValue; }
234      set { BestSolutionTestAccuracyParameter.ActualValue = value; }
235    }
236    #endregion
237
238    [StorableConstructor]
239    private TrainingBestSymbolicClassificationSolutionAnalyzer(bool deserializing) : base(deserializing) { }
240    private TrainingBestSymbolicClassificationSolutionAnalyzer(TrainingBestSymbolicClassificationSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
241    public TrainingBestSymbolicClassificationSolutionAnalyzer()
242      : base() {
243      Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
244      Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
245      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName, "The qualities of the symbolic expression trees to analyze."));
246      Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the training best solution should be calculated.", new BoolValue(true)));
247      Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionAccuracyParameterName, "Determines if the accuracy of the training best solution on the training and test set should be calculated.", new BoolValue(true)));
248      Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
249      Parameters.Add(new ValueLookupParameter<ClassificationProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
250      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
251      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
252      Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(false)));
253      Parameters.Add(new LookupParameter<SymbolicClassificationSolution>(BestSolutionParameterName, "The best symbolic classification solution."));
254      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic classification solution."));
255      Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic classification solution."));
256      Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic classfication solution."));
257      Parameters.Add(new LookupParameter<IntValue>(BestSolutionVariablesParameterName, "The number of variables used by the best symbolic classification solution."));
258      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingRSquaredParameterName, "The R² value on the training set of the best symbolic classification solution."));
259      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestRSquaredParameterName, "The R² value on the test set of the best symbolic classification solution."));
260      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingMseParameterName, "The mean squared error on the training set of the best symbolic classification solution."));
261      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestMseParameterName, "The mean squared error value on the test set of the best symbolic classification solution."));
262      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingRelativeErrorParameterName, "The relative error on the training set of the best symbolic classification solution."));
263      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestRelativeErrorParameterName, "The relative error value on the test set of the best symbolic classification solution."));
264      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionAccuracyTrainingParameterName, "The accuracy on the training set of the best symbolic classification  solution."));
265      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionAccuracyTestParameterName, "The accuracy on the test set of the best symbolic classification  solution."));
266      Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic classification solution should be stored."));
267    }
268
269    [StorableHook(HookType.AfterDeserialization)]
270    private void AfterDeserialization() {
271      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
272        Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(false)));
273      }
274    }
275
276    public override IDeepCloneable Clone(Cloner cloner) {
277      return new TrainingBestSymbolicClassificationSolutionAnalyzer(this, cloner);
278    }
279
280    public override IOperation Apply() {
281      #region find best tree
282      double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
283      SymbolicExpressionTree bestTree = null;
284      SymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
285      double[] quality = Quality.Select(x => x.Value).ToArray();
286      for (int i = 0; i < tree.Length; i++) {
287        if ((Maximization.Value && quality[i] > bestQuality) ||
288            (!Maximization.Value && quality[i] < bestQuality)) {
289          bestQuality = quality[i];
290          bestTree = tree[i];
291        }
292      }
293      #endregion
294
295      #region update best solution
296      // if the best tree is better than the current best solution => update
297      bool newBest =
298        BestSolutionQuality == null ||
299        (Maximization.Value && bestQuality > BestSolutionQuality.Value) ||
300        (!Maximization.Value && bestQuality < BestSolutionQuality.Value);
301      if (newBest) {
302        double lowerEstimationLimit = LowerEstimationLimit.Value;
303        double upperEstimationLimit = UpperEstimationLimit.Value;
304        string targetVariable = ProblemData.TargetVariable.Value;
305
306        if (ApplyLinearScaling.Value) {
307          // calculate scaling parameters and only for the best tree using the full training set
308          double alpha, beta;
309          SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
310            lowerEstimationLimit, upperEstimationLimit,
311            ProblemData.Dataset, targetVariable,
312            ProblemData.TrainingIndizes, out beta, out alpha);
313
314          // scale tree for solution
315          bestTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
316        }
317        var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
318          bestTree);
319        var solution = new SymbolicClassificationSolution((ClassificationProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
320        solution.Name = BestSolutionParameterName;
321        solution.Description = "Best solution on training partition found over the whole run.";
322
323        BestSolution = solution;
324        BestSolutionQuality = new DoubleValue(bestQuality);
325
326        if (CalculateSolutionComplexity.Value) {
327          BestSolutionLength = new IntValue(solution.Model.SymbolicExpressionTree.Size);
328          BestSolutionHeight = new IntValue(solution.Model.SymbolicExpressionTree.Height);
329          BestSolutionVariables = new IntValue(solution.Model.InputVariables.Count());
330          if (!Results.ContainsKey(BestSolutionLengthParameterName)) {
331            Results.Add(new Result(BestSolutionLengthParameterName, "Length of the best solution on the training set.", BestSolutionLength));
332            Results.Add(new Result(BestSolutionHeightParameterName, "Height of the best solution on the training set.", BestSolutionHeight));
333            Results.Add(new Result(BestSolutionVariablesParameterName, "Number of variables used by the best solution on the training set.", BestSolutionVariables));
334          } else {
335            Results[BestSolutionLengthParameterName].Value = BestSolutionLength;
336            Results[BestSolutionHeightParameterName].Value = BestSolutionHeight;
337            Results[BestSolutionVariablesParameterName].Value = BestSolutionVariables;
338          }
339        }
340
341        if (CalculateSolutionAccuracy.Value) {
342          #region update R2,MSE, Rel Error
343          IEnumerable<double> trainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable.Value, ProblemData.TrainingIndizes);
344          IEnumerable<double> testValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable.Value, ProblemData.TestIndizes);
345          OnlineAccuracyEvaluator accuracyEvaluator = new OnlineAccuracyEvaluator();
346          OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
347          OnlineMeanAbsolutePercentageErrorEvaluator relErrorEvaluator = new OnlineMeanAbsolutePercentageErrorEvaluator();
348          OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
349
350          #region training
351          var originalEnumerator = trainingValues.GetEnumerator();
352          var estimatedEnumerator = solution.EstimatedTrainingClassValues.GetEnumerator();
353          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
354            accuracyEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
355          }
356          originalEnumerator = trainingValues.GetEnumerator();
357          estimatedEnumerator = solution.EstimatedTrainingValues.GetEnumerator();
358          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
359            mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
360            r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
361            relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
362          }
363          double trainingAccuracy = accuracyEvaluator.Accuracy;
364          double trainingR2 = r2Evaluator.RSquared;
365          double trainingMse = mseEvaluator.MeanSquaredError;
366          double trainingRelError = relErrorEvaluator.MeanAbsolutePercentageError;
367          #endregion
368
369          accuracyEvaluator.Reset();
370          mseEvaluator.Reset();
371          relErrorEvaluator.Reset();
372          r2Evaluator.Reset();
373
374          #region test
375          originalEnumerator = testValues.GetEnumerator();
376          estimatedEnumerator = solution.EstimatedTestClassValues.GetEnumerator();
377          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
378            accuracyEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
379          }
380          originalEnumerator = testValues.GetEnumerator();
381          estimatedEnumerator = solution.EstimatedTestValues.GetEnumerator();
382          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
383            mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
384            r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
385            relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
386          }
387          double testAccuracy = accuracyEvaluator.Accuracy;
388          double testR2 = r2Evaluator.RSquared;
389          double testMse = mseEvaluator.MeanSquaredError;
390          double testRelError = relErrorEvaluator.MeanAbsolutePercentageError;
391          #endregion
392          BestSolutionTrainingAccuracy = new DoubleValue(trainingAccuracy);
393          BestSolutionTestAccuracy = new DoubleValue(testAccuracy);
394          BestSolutionTrainingRSquared = new DoubleValue(trainingR2);
395          BestSolutionTestRSquared = new DoubleValue(testR2);
396          BestSolutionTrainingMse = new DoubleValue(trainingMse);
397          BestSolutionTestMse = new DoubleValue(testMse);
398          BestSolutionTrainingRelativeError = new DoubleValue(trainingRelError);
399          BestSolutionTestRelativeError = new DoubleValue(testRelError);
400
401          if (!Results.ContainsKey(BestSolutionAccuracyTrainingParameterName)) {
402            Results.Add(new Result(BestSolutionTrainingRSquaredParameterName, BestSolutionTrainingRSquared));
403            Results.Add(new Result(BestSolutionTestRSquaredParameterName, BestSolutionTestRSquared));
404            Results.Add(new Result(BestSolutionTrainingMseParameterName, BestSolutionTrainingMse));
405            Results.Add(new Result(BestSolutionTestMseParameterName, BestSolutionTestMse));
406            Results.Add(new Result(BestSolutionTrainingRelativeErrorParameterName, BestSolutionTrainingRelativeError));
407            Results.Add(new Result(BestSolutionTestRelativeErrorParameterName, BestSolutionTestRelativeError));
408            Results.Add(new Result(BestSolutionAccuracyTrainingParameterName, BestSolutionTrainingAccuracy));
409            Results.Add(new Result(BestSolutionAccuracyTestParameterName, BestSolutionTestAccuracy));
410          } else {
411            Results[BestSolutionTrainingRSquaredParameterName].Value = BestSolutionTrainingRSquared;
412            Results[BestSolutionTestRSquaredParameterName].Value = BestSolutionTestRSquared;
413            Results[BestSolutionTrainingMseParameterName].Value = BestSolutionTrainingMse;
414            Results[BestSolutionTestMseParameterName].Value = BestSolutionTestMse;
415            Results[BestSolutionTrainingRelativeErrorParameterName].Value = BestSolutionTrainingRelativeError;
416            Results[BestSolutionTestRelativeErrorParameterName].Value = BestSolutionTestRelativeError;
417            Results[BestSolutionAccuracyTrainingParameterName].Value = BestSolutionTrainingAccuracy;
418            Results[BestSolutionAccuracyTestParameterName].Value = BestSolutionTestAccuracy;
419          }
420          #endregion
421        }
422
423        if (!Results.ContainsKey(BestSolutionQualityParameterName)) {
424          Results.Add(new Result(BestSolutionQualityParameterName, BestSolutionQuality));
425          Results.Add(new Result(BestSolutionParameterName, BestSolution));
426        } else {
427          Results[BestSolutionQualityParameterName].Value = BestSolutionQuality;
428          Results[BestSolutionParameterName].Value = BestSolution;
429        }
430      }
431      #endregion
432      return base.Apply();
433    }
434  }
435}
Note: See TracBrowser for help on using the repository browser.